NANOMAGNETIC ACTUATORS FOR NEUROMODULATION

Gabriela Romero Uribe, PhD
Klesse Associate Professor
Department of Biomedical Engineering and Chemical Engineering
Brain Health Consortium
UT Health San Antonio
Stimulation of cell signaling and differentiation

Controlled drug delivery

• Rodgers T., et al., Bioengineering, 2021, 8, 16.
Bioelectronics
Emerging area of medicine that uses miniaturized implantable devices to deliver electrical stimulation to nerves to control wide range of bodily functions

Electroceuticals
Type of bioelectronics aimed at replacing pharmaceutical therapy

• Represents a multimillion-dollar opportunity with $15,000 million dollars market in 2020 and expected to grow to $23,000 million dollars by 2026

• Medtronic, Roche, Siemens AG, Abbott, Honeywell International, Beckman Coulter, Life Sensors, Bioelectronic Corporation, Avago, Omnivision Technologies, Sotera Wireless, etc.
Deep Brain Stimulation (DBS)

- Mechanically invasive
- Non-specific cell type
- Surgical and electrochemical complications
- Unknown molecular mechanism

- Magnetic fields interact weakly with tissue due to low magnetic susceptibility
- Magnetic nanoparticles work as transducers of magnetic fields

http://www.treatment4addiction.com/drugs/society/teen-brain/
Synthetic magnetic nanomaterials coupled to channel proteins, which respond to stimuli (heat, mechanical strain, electric fields, and chemical interactions). In response, the channel proteins open allowing influx of ions, such as Ca\(^{2+}\) or Na\(^{+}\), triggering action potentials in neurons.

Thermal cues

Chemical cues

Mechanical cues
Synthetic **magnetic nanomaterials coupled to channel proteins**, which respond to stimuli (*heat, mechanical strain, electric fields, and chemical interactions*). In response, the channel proteins open allowing influx of ions, such as Ca$^{2+}$ or Na$^+$, **triggering action potentials in neurons**.

MAGNETIC HYPERTHERMIA CONCERNS

1. Potential **off-target heating** effects
2. Challenges in scaling **high-frequency AMFs** coils impede universal adoption of magnetic hyperthermia in biomedical research.
Polymeric Nanoactuators

Electric cues for stimulation of activity and growth

Biomimetic synthesized conductive copolymer 3,4-ethylenedioxythiophene (EDOT)-Pyrrole nanoparticles

- Pseudocapacitive behavior
- Good Conductivity
- High capacitance

Control
CCP-NPs
Charged CCP-NPs

Actin Nucleus

150 µm 500 nm
Imagine a world where we treat deadly diseases with electricity instead of pills or chemo.
Acknowledgments

Collaborators:
Rafael Morales from UPV/EHU, Spain
Carlos Monton from General Atomic
Sergio Moya, CIC biomaGUNE, Spain
Marco Marradi, Università degli Studi di Firenze, Italy

Postdocs
Nicolas Muzzio
Gloria Jimenez

PhD students
Rohini Guntur
Tina Rodgers
Amanda Gomez

Master students
Frances Arnold

Undergraduates
Angela San Juan
Claudia Collier
Vanessa Fisher
Ania Dudek
Athena Santi
Delina Yirgaalem
Nadeen Abdalla
Andrea Valero

Visiting PhD students
Eduardo Martinez-Cartagena
Cristian Salvador
Maria Regato
Bruno Espuche
Raquel Zurbano

Funding:

Collaborators:

Postdocs
Nicolas Muzzio
Gloria Jimenez

PhD students
Rohini Guntur
Tina Rodgers
Amanda Gomez

Master students
Frances Arnold

Undergraduates
Angela San Juan
Claudia Collier
Vanessa Fisher
Ania Dudek
Athena Santi
Delina Yirgaalem
Nadeen Abdalla
Andrea Valero

Visiting PhD students
Eduardo Martinez-Cartagena
Cristian Salvador
Maria Regato
Bruno Espuche
Raquel Zurbano

Funding:

• NIH
 National Institutes of Health
• NIGMS
• San Antonio Area Foundation
 Your Community Foundation
• NSF
 2021 CBET NSF CAREER AWARD
 College of Engineering
 and Integrated Design

MAGNAMED
Grant # 734801

SUPRGEN
Grant # 101008072

Surohno, CIC biomaGUNE, Spain
Marco Marradi, Università degli Studi di Firenze, Italy
THANK YOU

gabrielaromero.uribe@utsa.edu

https://ceid.utsa.edu/guribe/

Gabriela Romero Uribe, PhD
Klesse Associate Professor
Department of Biomedical Engineering and Chemical Engineering
Brain Health Consortium
UT Health San Antonio