INTRODUCTION

Photosynthesis, especially by *Synechococcus elongatus* bacteria found in light-exposed freshwater, plays a crucial role in global carbon fixation and bioenergy production. They mainly absorb light in the blue and red regions but have a "green gap" in the spectrum. The auxiliary phycobilisome pigments (phycoerythrin 570nm, phycocyanin 620nm, allophycocyanin 650nm) absorb light at different wavelengths of the green region making efficient for photosynthesis. The distribution and dynamics of energy transfer components in cyanobacterial thylakoid membranes governs the regulation of electron transfer pathways in nature, this attracted attention for exact energy transfer mechanism. To improve our understanding of the mechanism, we developed new method of regulating photosresponse without any genetic modification. In this project we study binding of these pigments with nblA peptide which quenches photosyntehsis by changing quantum yield using the simple extraction, quantification with response to absorption and emission phenomenon to identify the pigment responsible for quenching of bacterial photosresponse.

EXTRACTION QUANTIFICATION OF PIGMENTS

Our Procedure for Extraction of Phycobilisome pigments

A. Centrifuge
B. Vortex with glass beads
C. Isolate the pigments

Trend in PL intensity change over time of *S. elongatus* (SE) bacteria at 570nm excitation wavelength for phycobilisome pigment

Possible mechanism of energy transfer through phycobilisome pigments

Forster Resonance Energy Transfer (FRET)

WHERE IS AN ATTACHMENT SITE?

Fluorescence intensity change in phycobilisome complex (PBS) and chlorophyll pigment (CH) after treatment with nblA peptide and pyrene- 4,5-dione dye

CONCLUSIONS: Upon introduction of nblA peptide the fluorescence intensity quenching is maximal at 620nm excitation wavelength, corresponding the phycocyanin resonance excitation. Upon introduction of pyrene derivative (dione dye) the fluorescence intensity of chlorophyll a (420nm of excitation) is enhanced, while phycobilisome pigment complex is does not show significant change.

Acknowledgements

Joint School of Nanoscience and Nanoengineering, SENIC and NNCl, supported by National Science Foundation ECCS-1542174, to the UNC Inter-institutional Planning Grant A20-0089-001, US Patent Application No. 63/403,434.

References:

1. SE bacteria control sample
2. SE bacteria treated with nblA peptide hybrid (nbla-GT15-SWCNT) (n=3)

stDNA(GT15)-SWCNT hybrid is able to electrostatically attach itself to nblA peptide thereby forming a nbla-GT15-SWCNT hybrid which is able to enter the thylakoid membrane of *S. elongatus* bacteria.