Aptamers are short, synthetically derived ligands that take advantage of oligonucleotides' diverse combinatorial capabilities to achieve strong binding affinity with a high degree of specificity toward a target of interest [1, 2, 3]. Conventional research-grade antibodies often show significant batch-to-batch and/or brand-to-brand variability with some studies stating that as much as 51% of available product cannot be successfully validated [4]. Unlike conventional antibodies, aptamers are sequence-defined and chemically synthesized [4]. This makes them highly consistent and easy to modify when compared to antibodies. Aptamers also have fewer target limitations than conventional antibodies and can be generated to target toxic small molecules, non-immunogenic targets, and even single molecules.

The ability to design and readily produce highly specific and selective aptamers for a broad range of targets makes them a promising tool in the areas of diagnostic and therapeutic research, especially in areas related to the identification of biomarkers.

While there are many methods of evaluating the binding, Surface plasmon resonance imaging (SPRi) is the method that we chose to quantitatively evaluate the binding events occurring between our aptamers and chosen targets. This method will provide a snapshot of the binding affinity in each individual binding event, allowing us to strictly verify the accuracy of our aptamers before utilizing them as targets for in future biosensor applications.

PROJECT BACKGROUND

OBJECTIVE 1

Identify cell lines with surface markers of interest and use coding sequences to create aptamers.

To design aptamers that target specific cell types with a high degree of selectivity and affinity, our first step is to identify the surface receptors and then identify the appropriate coding sequence that will target these specific surface molecules.

OBJECTIVE 2

Test the binding affinity of aptamers using SPRi.

The first phase of evaluation will focus on single populations of cells against the aptamers developed to target a specific target on their surface. From these experiments we will ascertain the precise quantitative measure of each aptamer’s affinity.

OBJECTIVE 3

Test the selectivity and affinity of aptamers concurrently using SPRi.

The second phase of evaluation will test the aptamers against a mixed population of cells, where only some of the population has the specific surface targets. From these experiments we will gather a more precise evaluation of the selectivity in combination with the affinity.

EXPERIMENTAL FACTORS

CELL TYPE

- Neuronal cells
- Mammary epithelial cells

SURFACE RECEPTOR

- Neuronal cells: L1CAM, APLP1, ATP1A3
- Mammary epithelial cells: ER-α, HER-2

DISEASE RELEVANCE

- Neuronal cells: Neurodegenerative
- Mammary epithelial cells: Breast cancer

APPLICATIONS

- Biosensing, Bioimaging, Diagnostics
- Therapeutic Tools, Drug Delivery
- Analytical Reagents, Hazard Detection, Food Inspection

FUTURE DIRECTIONS

The sensitivity of aptamers, combined with the ability to synthesize them consistently and more cheaply, makes them ideal candidates for future research in the diagnostic space. They will provide the ability to produce high volumes of specific targets for wide-ranging molecular and cellular targets. These characteristics also make them very promising, especially in areas related to biomarker research.

With this research, we aim to enable further utilization of aptamers as targets for new isolation, purification, and analysis of disease biomarkers. Such new methods will aid efforts to improve early methods of detection for a plethora of diseases that are difficult to diagnose.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the National Science Foundation (Grant: 2302452), the U.S. Army Combat Capabilities Development Command – Soldier Center (cooperative agreement W911QY2220005), and the NDEP-STEM program.

REFERENCES