

Sustainable Solar-Driven H₂O₂ Production from H₂O and O₂

Qinmin Zheng¹, Danmeng Shuai^{1*}

1 Department of Civil and Environmental Engineering, The George Washington University * Corresponding author, E-mail: danmengshuai@gwu.edu

School of Engineering & Applied Science THE GEORGE WASHINGTON UNIVERSITY

Background

Challenges

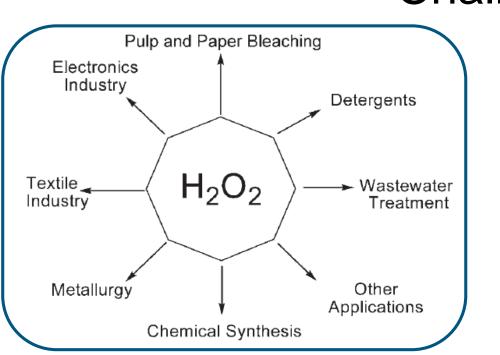
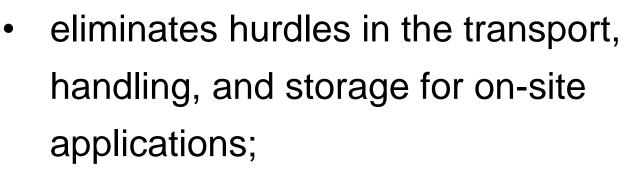


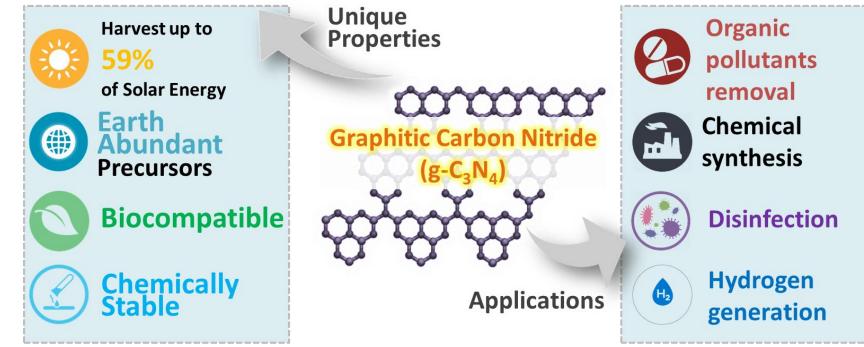
Figure 1. Principal uses of hydrogen peroxide Angew. Chem. Int. Ed. 2006, 45, 6962 - 6984

- organic layer
 aqueous layer
 + H₂O₂ 40% solution of H2O2
- **Figure 2.** Industrial production of H_2O_2 via the anthraquinone process
- **5.5 Million** metric tons H₂O₂ had been consumed globally per year (reported on 2015).
- H₂O₂ is widely used in almost all industrial areas, particularly in the chemical industry and environmental protection.
- However, the current industrial production of H₂O₂ is **not** sustainable, because it requires significant energy input and generates waste.


A Solution and Limitations

Photocatalysis is a promising **green technology** for H₂O₂

generation, because it $H_2O + \frac{1}{2}O_2 \xrightarrow{\text{Photocatalyst}} H_2O_2$


Figure 3. The scheme of photocatalytic H₂O₂ generation

generates H₂O₂ in situ under sunlight;

promotes sustainability by reducing the energy and chemical demand.

Graphitic carbon nitride (g-C₃N₄) has recently emerged as a novel photocatalyst for multiple applications;

Figure 4. The unique properties of g-C₃N₄ and its applications.

- ➤ However, the application of g-C₃N₄ for H₂O₂ generation is at its **nascent stage**;
- Its practical application is challenged by the inefficient photocatalytic performance and reactor design.

Objectives

- We aim to explore the potential applications of g-C₃N₄ for sustainable H₂O₂ generation via
- Developing g-C₃N₄ based photocatalyst with improved photocatalytic performance;
- Understanding mechanisms of H₂O₂ generation on g-C₃N₄;
- Designing a solar photocatalytic reactor.

Methods

VS.

Synthesis of chlorine doped g-C₃N₄ (MCC) using a solvothermal method.

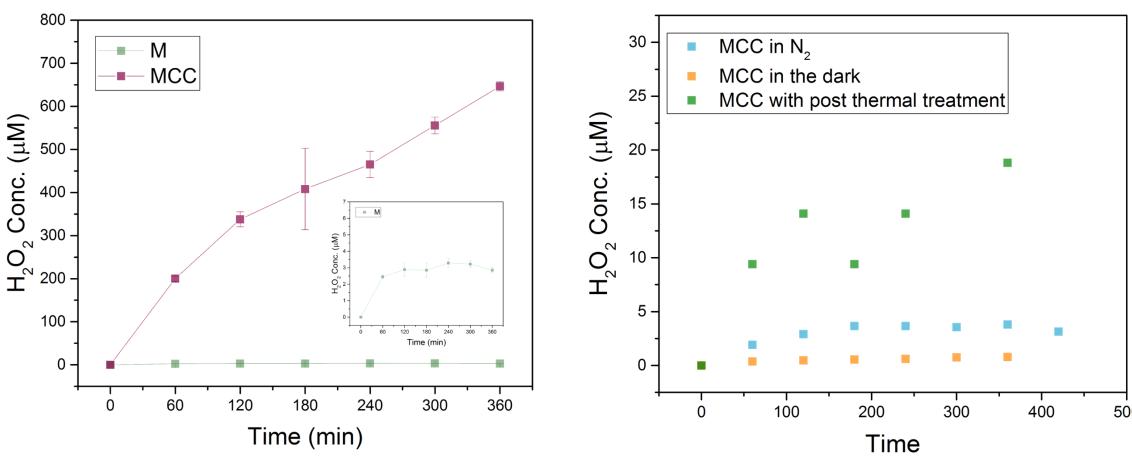
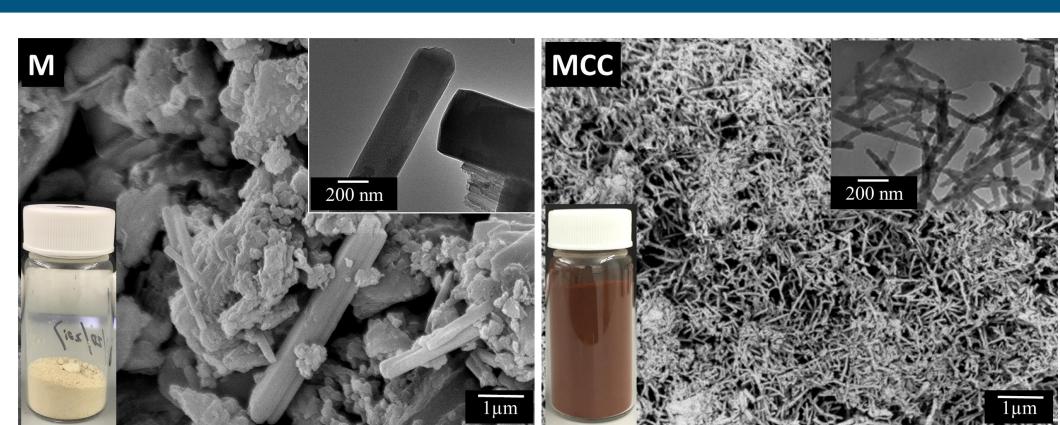
- \triangleright Photocatalytic generation of H₂O₂ on g-C₃N₄.
- The experiments were conducted under simulated visible light (xenon lamp, λ > 400nm), LED irradiation (7 W), outdoor sunlight;
- The catalyst loading was 1 g/L;
- pH was adjusted by using a phosphate buffer.
- H₂O₂ was measured colorimetrically by the DPD method.

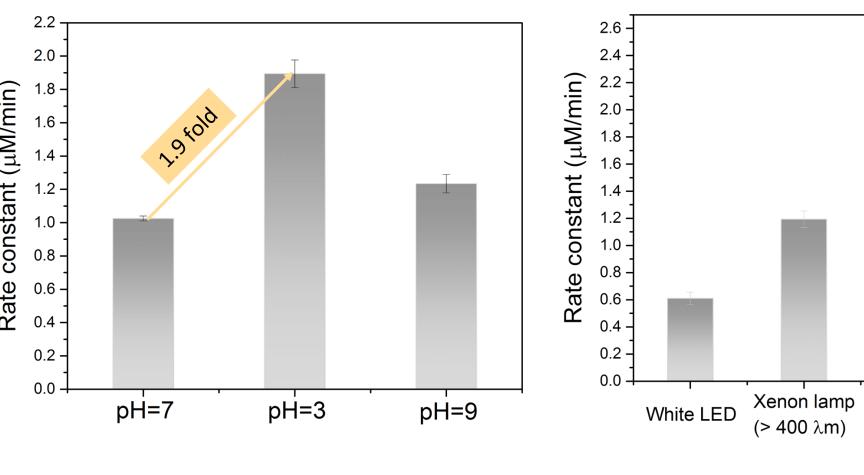
Innovative method: CI doped g-C₃N₄ Solvothermal polycondensation Solvothermal polycondensation

Figure 5. From left to right: Photocatalytic experimental setup with simulated solar irradiation (both visible light and AM 1.5 G sunlight), outdoor sunlight, and LED irradiation.

Results

- MCC had a fiber structure and a smaller particle size (Figure 6) resulted from solvothermal polycondensation (high product yield from the precursors: ~ 53%).
- \rightarrow MCC generated H₂O₂ of notable concentrations (up to ca. **650 μM in 6 h**, with a rate of **1.19 ± 0.06 μM/min**) (Figure 7), while the bulk g-C₃N₄, M, only generated about 3 µM in 6 h under visible light irradiation ($\lambda > 400$ nm).


Figure 8. H₂O₂ generation on MCC and MCC **Figure 7.** H₂O₂ generation on g-C₃N₄ samples (M and MCC) under simulated visible sunlight with post thermal treatment under light irradiation and dark condition with/without oxygen. irradiation ($\lambda > 400$ nm, xenon lamp).

- \rightarrow **pH matters:** the rate constant of H₂O₂ generation was increased by 1.9 fold with the decrease of pH from 7 to 3, likely due to the proton-coupled electron transfer (PCET) mechanism and proton dependence of H_2O_2 production (Figure 9).
- > MCC can generate H₂O₂ under different light resources, such as LED, direct sunlight, etc. The rate constant can reach up to 2.32 ± 0.10 µM/min under AM 1.5 G solar irradiation.
- MCC was stable after 6 h reaction, with the only loss of chloride, indicated by the XPS analysis (Figure 11).

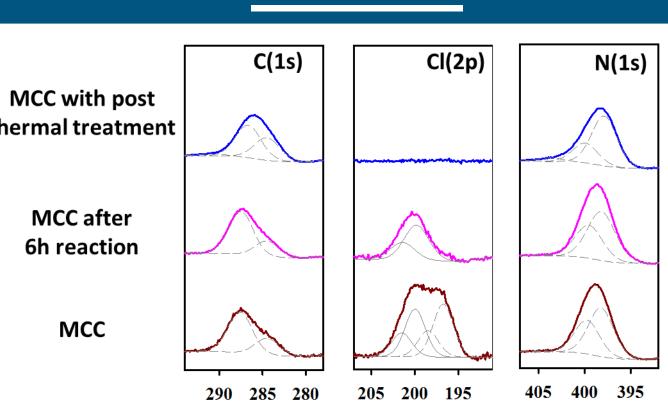
Figure 6. SEM and TEM (insets) images of g-C₃N₄ samples. TEM of MCC was revised from Angew. Chem. Int. Ed. 2012, 51, 11814-11818

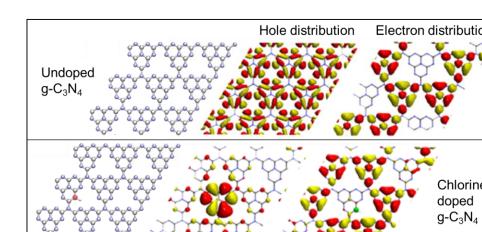
- > Light energy and oxygen are required for the photocatalytic generation of H_2O_2 on MCC (Figure 8).
- > The generation of H₂O₂ was largely inhibited on MCC with the post thermal treatment (500 °C in N₂) (Figure 8), which may due to the loss of chlorine on MCC after the thermal treatment (Figure 11).

Figure 9. Rate constants of H_2O_2 generation on MCC in the buffer solution with different pH.

Figure 10. Rate constants of H_2O_2 generation on MCC under different light irradiation.

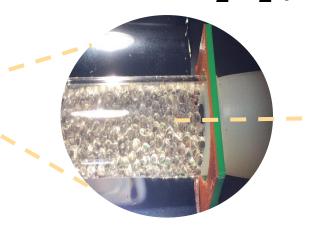
Results




Figure 11. The X-ray photoelectron spectroscopy (XPS) spectra of C 1s, Cl 2p, N 1s for different MCC samples.

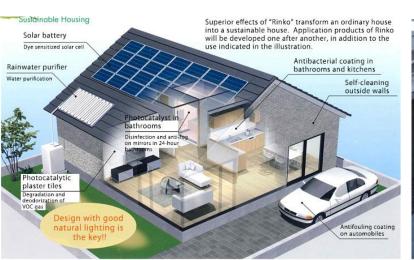
Conclusions


- ➤ MCC, a Cl-doped g-C₃N₄ shows **promise** for sustainable H₂O₂ generation because of its low cost, high photocatalytic efficiency, and stability.
- Chlorine in MCC may play a crucial role in H₂O₂ generation.
- MCC is robust under the irradiation of different light sources.
- > This work will pave a new avenue for **on-site** H₂O₂ generation and its applications of disinfection, medical care, hygiene, and water purification for remote areas, developing countries, and regions after natural disasters.


Future works

Molecular simulations to understand the role of chlorine

➤ Potable solar reactor for on-site H₂O₂ production


MCC coated

glass beads

Applications

3D printed reactor

> On-site H₂O₂ generation for water treatment, disinfection, hygiene, and medical care for remote areas, developing countries, and regions after natural disasters.

Downloaded from

https://www.asaka.co.ip

Downloaded from

Downloaded from

http://www.odor.net

Publication

Zheng, Q., Durkin, D. P., Elenewski, J. E., Sun, Y., Banek, N. A., Hua, L., Chen, H., Wagner, M. J., Zhang, W., Shuai, D. Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications

http://www.circleofblue.org

for Water Treatment. Environ. Sci. Technol. 2016, 50 (23), 12938-12948.