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Methods Results

Objectives

Background

Challenges

➢ 5.5 Million metric tons H2O2 had been consumed globally 

per year (reported on 2015). 

➢ H2O2 is widely used in almost all industrial areas, particularly 

in the chemical industry and environmental protection.

➢ However, the current industrial production of H2O2 is not 

sustainable, because it requires significant energy input 

and generates waste.

Figure 1. Principal uses of hydrogen peroxide
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• generates H2O2 in situ under 

sunlight;

• eliminates hurdles in the transport, 

handling, and storage for on-site 

applications;

• promotes sustainability by 

reducing the energy and 

chemical demand.
Figure 3. The scheme of 

photocatalytic H2O2 generation

A Solution and Limitations

➢ Graphitic carbon nitride (g-C3N4) has recently 

emerged as a novel photocatalyst for multiple applications;

➢ However, the application of g-C3N4 for H2O2 generation is at 

its nascent stage;   

➢ Its practical application is challenged by the inefficient 

photocatalytic performance and reactor design.

➢ We aim to explore the potential applications of g-C3N4 for 

sustainable H2O2 generation via

• Developing g-C3N4 based photocatalyst with improved 

photocatalytic performance;

• Understanding mechanisms of H2O2 generation on g-C3N4;

• Designing a solar photocatalytic reactor.

➢ Synthesis of chlorine doped g-C3N4 (MCC) using a solvothermal method. 

➢ Photocatalytic generation of H2O2 on g-C3N4.

• The experiments were conducted under simulated 

visible light (xenon lamp, λ> 400nm), LED irradiation 

(7 W), outdoor sunlight;

• The catalyst loading was 1 g/L;

• pH was adjusted by using a phosphate buffer.

• H2O2 was measured colorimetrically by the DPD 

method. 

Results

➢ MCC had a fiber structure and a smaller particle size 

(Figure 6) resulted from solvothermal polycondensation 

(high product yield from the precursors: ~ 53%).

➢ MCC generated H2O2 of notable concentrations (up to ca. 650 

µM in 6 h, with a rate of 1.19 ± 0.06 µM/min) (Figure 7), while 

the bulk g-C3N4, M, only generated about 3 µM in 6 h under 

visible light irradiation (λ > 400 nm).

Conclusions

Future works

Figure 6. SEM and TEM (insets) images of g-C3N4 samples. 
TEM of MCC was revised from Angew. Chem. Int. Ed. 2012, 51, 11814 –11818

Figure 7. H2O2 generation on g-C3N4 samples 

(M and MCC) under simulated visible sunlight 

irradiation (λ > 400 nm, xenon lamp).

Figure 9. Rate constants of H2O2

generation on MCC in the buffer solution 

with different pH.

Figure 11. The X-ray photoelectron spectroscopy (XPS) spectra of C 1s, Cl 2p, N 1s for 

different MCC samples.

➢ MCC, a Cl-doped g-C3N4 shows promise for sustainable H2O2

generation because of its low cost, high photocatalytic 

efficiency, and stability.

➢ Chlorine in MCC may play a crucial role in H2O2 generation. 

➢ MCC is robust under the irradiation of different light sources.

➢ This work will pave a new avenue for on-site H2O2 generation 

and its applications of disinfection, medical care, hygiene, and 

water purification for remote areas, developing countries, and 

regions after natural disasters. 

➢ Potable solar reactor for on-site H2O2 production

Applications
➢ On-site H2O2 generation for water treatment, disinfection, hygiene, and 

medical care for remote areas, developing countries, and regions after 

natural disasters. 
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Figure 4. The unique properties of g-C3N4 and its applications.

Figure 5. From left to right: Photocatalytic experimental setup with simulated solar irradiation 

(both visible light and AM 1.5 G sunlight), outdoor sunlight, and LED irradiation.
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Figure 10. Rate constants of H2O2 generation 

on MCC under different light irradiation.

➢ Photocatalysis is a promising green technology for H2O2 

generation, because it

Figure 2. Industrial production of H2O2 

via the anthraquinone process

VS.

Innovative method: Cl doped g-C3N4

Solvothermal polycondensation

Conventional method: Bulk g-C3N4

Thermal polycondensation

Figure 8. H2O2 generation on MCC and MCC 

with post thermal treatment under light irradiation 

and dark condition with/without oxygen.

➢ Light energy and oxygen are required for the photocatalytic 

generation of H2O2 on MCC (Figure 8).

➢ The generation of H2O2 was largely inhibited on MCC with the 

post thermal treatment (500 °C in N2) (Figure 8), which may 

due to the loss of chlorine on MCC after the thermal treatment 

(Figure 11). 

➢ pH matters: the rate constant of H2O2 generation was 

increased by 1.9 fold with the decrease of pH from 7 to 3, likely 

due to the proton-coupled electron transfer (PCET) mechanism 

and proton dependence of H2O2 production (Figure 9).

➢ MCC can generate H2O2 under different light resources, such 

as LED, direct sunlight, etc. The rate constant can reach up to 

2.32 ± 0.10 µM/min under AM 1.5 G solar irradiation. 

➢ MCC was stable after 6 h reaction, with the only loss of 

chloride, indicated by the XPS analysis (Figure 11).    

➢ Molecular simulations to understand the role of chlorine

MCC coated 

glass beads
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