

Research Triangle Nanotechnology Network: An Interdisciplinary Innovation Hub

Jacob Jones (Director, NC State), David Berube (NC State), Phil Barletta (NC State), Nan Jokerst (Duke), Mark Walters (Duke), Carrie Donley (UNC), Jim Cahoon (UNC), & Maude Cuchiara (NC State)

A site in the National Nanotechnology Coordinated Infrastructure (NNCI) supported by Grant No. ECCS-1542015.

www.rtnn.org, rtnanonetwork@ncsu.edu

Overview

RTNN serves as an interdisciplinary innovation hub for transformative nanotechnology research, fabrication, commercialization, and education by leveraging the capabilities and expertise of 9 user facilities at research universities in the Research Triangle.

Core Strengths

- Turn-key and dynamic facilities
 - >1,300 users and >55,000 hours of collective use annually
 - >39 new tools introduced into facilities since 2016
- Unique capabilities
 - Bio-processing bays, functionalization of fibers and textiles, hot embosser, X-ray and neutron imaging, positron annihilation lifetime spectroscopy, in situ microscopy and diffraction, mesocosms
- Well-supported faculty research in nanotechnology
- Large non-traditional, multidisciplinary user community
- Well-established user base in traditional technologies
- Expertise in emerging needs and capabilities
 - Non-traditional characterization and fabrication (e.g. soft, bio-based, and flexible materials)
- Capacity for technology transfer
 - Research Triangle Park, 4th largest nano-metro area in the U.S., NC State's Centennial Campus
- Quantitative social science research

Nano-Technical Focus Areas

 Interfaces, Metamaterials, Fluidics, and Heterogeneous Integration

Dynamically reconfigurable active thin film silicon microparticles

- Organic and Inorganic 1- and 2-D Nanomaterials
- Nanomaterials for Biology and Environmental Assessment
- **Textile Nanosciences and** Flexible Integrated **Systems**

Genetically encoded lipidpolypeptide hybrid nanomaterials

Low-power wearable systems for continuous monitoring of environment and health

Building the User Base

Kickstarter Program

- Provide free access to facilities to new, non-traditional users
- 52 projects and (>1,100 hours of use)

"...there's a small group of us that are out trying to develop new ideas and kind of unconventional ways to do things. So I'm already telling them about [the Kickstarter Program]."

"Making these facilities accessible is critical for a small startup, where dollars are limited but enthusiastic users are not."

Selected Participant Results

carbon ink of the Greek Middle school students papyri manuscript (inset) using the portable SEM in their classroom

Nanotechnology: A Maker's Course

- Massive Open Online Course (hosted on Coursera)
- Educational foundation in nano-fabrication and characterization
- Demonstrations of state of the art equipment
- Since September 2017 launch: >21,000 visitors; >9,000 enrolled

Introductory lecture on

nanofabrication

"I like the speaker very

much, I hope I can be a

scientist like her."

Photolithography demo in the clean room

www.coursera.org/learn/nanotechnology

X-ray spectroscopy

Technical workshops and short courses

- Exposure to cutting-edge equipment and techniques
- Hands-on learning experiences prepare participants for use
- 2017-2018: 31 events, >250 participants

Microfluidic device created during a workshop

Participants working on a vacuum system

Community college educators gowned for clean room entry

K-12 Engagement

- Immersive lab experiences with hands-on time using tools
- Remote connections to instruments, students, and staff in the facilities
- Classroom visits with portable SEM
- Lesson plans linked to educational standards
- Partnerships with Girl Scouts and local libraries
- NanoDays: lab tours, demos, and hands-on activities

Kids try various nano activities at Girls Scouts learn how to the Chapel Hill Public Library on operate an SEM during Girls STEM Day @ Duke National Nanotechnology Day

> 4,900 people reached in Year 3

> 60% participation by girls and underrepresented minorities in STEM

Social and Ethical Implications of Nanotechnology

Deep assessment

- Quantitative evaluation of user programs drives change
- Evaluation determines, e.g., the effectiveness of Kickstarter program at recruiting participants as long-term users

Overall Satisfaction in Facilities

- Measured on Likert scale (1-7) where 7 = very satisfied
- Satisfaction ratings at one facility did not meet peers'.
 - Led to a change in leadership, renovations, and restructuring of facility resulting in increased user satisfaction

Nanotechnology resources for the public

- Social media to communicate nanotechnology information effectively
- Clearinghouse of crowd-sourced information on nanotechnology innovation, research, and education

