

Environmental transformation and biological fate of fresh and aged cerium oxide nanoparticles EPA STAR Program: No. RD-83486001 Dingsheng Li¹, James Barres¹, Ethan Eagle¹, Claude Emond², Masako Morishita¹, James G. Wanger³, Margaret Wooldridge¹, Olivier Jolliet^{1*}

1. Introduction

The overall objective is to improve our understanding of environmental exposure-dose pathways of CeO_2 NPs. Our Specific Aims are:

(1) Environmental transformation and uptake of freshly-combusted and aged CeO₂: characterize environmental transformation and physicochemical properties of aged CeO₂ NPs using their interactions with UV radiation and ambient air co-pollutants, and compare them to freshly-combusted CeO₂ NPs.

(2) *In vivo* biological fate: determine the biological fate of freshlycombusted and aged CeO_2 NPs, comparing the concentrations in blood and target organs resulting from animal inhalation and IV exposures.

(3) *In silico* **PBPK modeling:** develop and evaluate a Physiologically Based Pharmacokinetic (PBPK) model of CeO₂ NPs to identify the main factors affecting translocation and distribution of CeO₂ NPs in the body.

2. Methods Generation and exposure experiment settings Gas Sampling (GS), NO_x, SO₂, Inhalation Chambers + Filters 0000 Burner Exhaust Vent <u>4 Pumps</u> 6 LPM flow rate 1 LPM SMPS Aging Chamber Inlet 1 LPM Filter 1 LPM GS

Fig 1: Image of the nanoparticle generation system integrated with the particle aging and inhalation systems.

Exposure test conditions

- Concentrations for fresh and aged CeO₂ NPs: 12.9 ± 0.4 and 2.0 ± 0.5 mg/m³.
- Rats were exposed for 5 hours and sacrificed 15 min, 1 day, 7 days, and 14 days after exposure. Two rats per time point.
- Lungs, blood, liver, spleen, brain, kidneys, heart, and feces were analyzed for CeO₂ content with ICP-MS.

Fig 2. Conceptual framework of the PBPK model.

3. Results Characterization of nanoparticles

Fig 3. Nanoparticle concentration and size during a 4 hour SMPS characterization study with ultraviolet lights applied in the aging chamber at 11am. These conditions represent a high particle loading case.

The ultraviolet light led to a substantial reduction in particle size of up to a factor 3.

References

- I. US EPA, 2009. Report number EPA/635/R-08/002F.
- . HEI (Health Effects Institute), 2001. HEI communication 9, North Andover, MA; Flagship Press.
- . Brunner et al., 2006. Environmental Science & Technology, 40, 4374-4381.
- . Lin et al., 2006. International Journal of Toxicology, 25, 451-457.
- 5. Park et al., 2008. *Toxicology*, **40**, 220-227. 6. Li et al., 2013. *Nanotoxicology*, in press.

¹ University of Michigan ² University of Montreal ³ Michigan State University * ojolliet@umich.edu

- Adapted from Li et al., 2013 (6).
- With a novel model and specific subcompartments for the NPs capture by phagocytizing cells.

Fig 4. TEM photos of fresh CeO₂ nanoparticles

Observed Nano CeO₂ masses Fresh nanoparticles 0.0 0.001

PBPK model results

4. Conclusions

- Future work:
- \succ Increase animal sample size.

• Lungs contained the highest amount of CeO₂ NPs. Concentrations in other organs were three to four orders of magnitude lower.

• High concentrations of CeO₂ NPs were also found in feces after one day (7300 mg/kg against 1900 mg/kg in the lung), but sharply decreased afterwards (178 mg/kg in feces after 4 days)

Fig 6. PBPK modelled fit for the measured data • The alveolar region in the lungs takes up the majority of NPs. • NPs are slowly released into the blood and distributed to other organs. • Parts of the dose may deposit in the upper airway and are transferred into the GI tract before being quickly excreted via feces.

• Nanoparticle generation and aging system is established and stable. • Conditions for animal exposure study are optimized by the test runs. • PBPK model can be applied to this study with limited adaptation.

> Additional measurements from GI tract, feces, and the rest of the body. Conduct *in vitro* studies with macrophages.