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About the CPN CPN Education Programs

Stanford University and IBM Corporation, with funding from the National Science Foundation, founded the Center for Probing The Summer Institute for Middle School Teachers (SIMST)

the Nanoscale to achieve five principal goals. In June of 2007 the CPN offered the second annual Summer Institute for Middle School Teachers
(SIMST) to 16 teachers from California.

“To develop novel probes that dramatically improve our capability to observe, manipulate, and control nanoscale objects and Our goal was to excite teachers about nanoscale science while increasing their knowledge of

phenomena. physical science and providing them with ready-to-use learning modules. Teachers worked
closely with CPN scientists on inquiry-based modules that address California’s 8th grade

“To apply these novel probes to answer fundamental questions in science and to shed light on materials issues which have science content standards. Alumni of the program have access to the CPN nanoprobe lending-

economic importance for industry. library. For information contact Kyle Cole (kylecole@stanford.edu, 650-723-4490)

“To educate the next generation of scientists and engineers regarding the theory and practice of these probes. On-line N a“ﬂprﬁbe Videos

The CPN is deeply committed to educating the next generation of scientists and engineers and offers a variety of on-line educational
videos. Videos of the course “Probing the Nanoscale” (Applied Physics 2795) overviews the S— '
principles and practice of various scanning probes and includes seminar-type lectures on the
applications being pursued by CFN researchers.

*VVideo lectures on nanoprobe theory, operation and research.

“To transfer our technology to industry so that corporations can manufacture and market our novel probes worldwide.

“To inspire thousands of middie school students by training their fteachers at a Summer Institute for Middle School Teachers.

Director: Kathryn Moler (kmoler@ stanford.edu)

Deputy Director: David Goldhaber-Gordon (goldhab@stanford.edu) = oy *Avallable with English Capthns | | PROBING THE NANOSCALE
Assoclate Director: Kyle Cole (kylecole@stanford.edu) ( P N & (D) T===2 Term-searchable database links to multiple videos i
Program Manager: Laraine Lietz-Lucas (lietz@stanford.edu) -:L — Q‘z«%,fi ===T=® containing your search term ) Bt Udwciny

See website for details: http://www.stanford.edu/group/cpn/
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