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Environmental Cycling and
Potential Risks of Nanomaterials
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reside
v'Do they bioaccumulate?
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Fundamental Processes Affecting
Transport and Exposure

m Aggregation and Deposition

m Transformations
— Biotransformations

1 Microbial-mediated redox transformations

— Abiotic Transformations
#Photolysis, hydrolysis, dissolution




Aggregation/Agglomeration

>

10 nm

Affects:
Transport-porous media, membranes, ...
Phagocytosis
Transformation/degradation
Reactivity-e.g. ROS
Toxicity

LN

SIZE MATTERS! )




Fullerene Aggregation in Water

v'Cluster dimensions
ranged from 25-500 nm

v'Stable suspensions <
50 mM (NaCl)

v'No surface coatings

v'Stabilization mechanism
unclear

Fortner, et al. (2005). C60 in Water: Nanocrystal Formation and Microbial
Response. Environ. Sci. Technol. 39(11); 4307-4316.




Bare NZVI Aggregation & Sedimentation
d=10"
(~80 mg/L) Nanoiron sedimentation in 1 mM NaCl
1-min
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Coatings on Nanomaterials

m Coatings provide...
— Dispersion stability
— Functionality
— Targeting capabillities -
] N Saleh, et al. (2005) Nano Lett. 5
— Biocompatibility (12) 2489-2494.
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Hyung, et al. EST Cai et al., 2006 Nanoletters -
41(1), 179-184 6 (4) 669-676 Keng et al. 2007 ACS Nano
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Nanoparticle Stabilization

m Electrostatic Stabilization

| Steric Stabilization




Modifiers Inhibit Agg/Sed

Polymers inhibit

aggregation and
M\Am Attt An 4 PSSTOK agglomeration
' and provide a
stable fraction

—

R
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OO0~ oo ey CMCI0K
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Sedimentation ®,  Sedimentation I

No apparent
trend with MW

200 300

Time (min)
Saleh, N. et al. (2005). “Nano Lett. 5 (12) 2489-2494.

Saleh, N. et al., (2007) Environ. Eng. Sci. 24 (1) p.45-57.
Phenrat, Tilton, and Lowry, J Nanopart. Res. (in press)




NOM Stabilized Carbon MWNTs

m Natural Fulvic Acids in Suwannee River
stabilize MWNTs (500 mg/L)

1% SDS  Suwannee River Water
After mixing and 4-days settling

Hyung, et al. Environ. Sci. Technol. 2006 41(1); 179-184




Forces Affecting Agglomeration
(and Deposition)

Attraction due to V 4, tVy

Also: polar interactions, acid base, surface roughness




Configuration of Adsorbed

RNIP

Homopolymer
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Important parameters: Adsorbed mass and layer thickness (d




Ohshima’s Model
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d-layer thickness
N-charge density in layer
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Phenrat, Tilton, and Lowry, J Nanopart. Res.

(in press) NaCl concentraiton (mM)




Measured Layer Properties

Modifier Y [Wpon

W

(kg/mole) (mV)

PSS 70k 70 + 2.1+0.2
PSS1M 1,000 1.7+0.1

CMCI0K 90 3.8+0.2

CMC 700K 4.2+0.2

PAP2.5K 5.1+0.1

PAP 10k 4.5%0.2

\. v J | R

Steric Repulsions ES Repulsion

Phenrat, Tilton, and Lowry, J Nanopart. Res. (in press)




Surface Excess and Layer Thickness
correlate with ability to Stabilize NZVI
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Phenrat, et al., J Nanopart. Res. (in press)



Agglomeration (and deposition)
IS In a Secondary Minimum

Attraction due to V4, +V,
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Velas’ Vosm
due to polyelectrolyte
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Coatings also Affect Reactivity

Cl Cl

C=
Cl Cl¥  M\H

PSS70K-Modified NZVI
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But......

|I Vosm and Velas Attraction due to V
depends on:

— Coating properties
— Fluid properties u
— Temperature ‘ >

- ~

- /« #\ ===

— Part|C|e S|Ze? Repulsion due to V¢tV +V

S osm elas

+V,

Rich area for research-
How is conformation of adsorbed macromolecules,
affected by solution properties?




Deposition

o
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10 nm

Affects important transport processes:

Transport-porous media, surface water
Reactivity-e.g. ROS

Bioavailability

Degradation

Saleh et al. 2007 EES 24 (1) 45.




Nanomaterial Mobility in Porous Media

Reactive nanoparticles
are injected into a well

m A---Aggregation
@ B---Straining

ARINEED m C---Deposition
0”0 I:Iaro'lppa’rticles" ‘% S

o'¢: e :: " : / — Contaminant [ | D---NAPL
Targeting

Plume

Depends on:

Chemical factors
pH, ionic strength, ionic
composition, surface
chemistry

Physical factors

Cand Eralrs flow velocity,
particle/aggregate size,
heterogeneity
a

Lowry, G. V. (2007). Groundwater Remediation Using Nanoparticles. In Environmental Nanotechnology: Applications
and Impacts of Nanomaterials. Eds. M. Wiesner and F. Bottero, McGraw-Hill, New York, NY, 2007 p.297-333.




RNIP with Adsorbed Polymer Mobile
IN Saturated Sand columns

v" All modifiers enhance
mobility relative to bare
RNIP

=
Bare RNIP+ MRNIP RNIP + RNIP+
RNIP PSS-650 SDBS PSS-462

v Variation between L=12.5-cm silica sand column with porosity of 0.33. Particle

polymers and surfactants concentration is 3 g/L and I=1mM. Modifying agents were added at
implies potential to select a 2g/L concentration in each case. MRNIP was supplied by Toda

transport distance Kogyo, Inc. The approach velocity was 93 m/d.

Saleh et al., 2007 EES 24(1) 45-57.




Mobility Depends on lonic
Strength and Composition

Tracer 9695‘0‘6?& :&Wg

1TmM
10mM %

100mM ®

500mM ApnbdA Ban,  ®0
1000mM A AAp

L=61 cm
porosity=0.33
Velocity 3.2x102 cm/s
| | 1=1-1000 mM

1.0 15 : . Na* or Ca?*

Pore Volume 30 mg/L particles

Saleh, N. et al. ES&T (in revision)




Mobility Depends on Coating Type and
Geochemistry (30 mg/L particles)

Modifier

NE!

Log o

Dist.

(m)

Applying a simple
filtration model yields

Polymer

the predicted transport (MW=125k)

distance needed for

99% removal

Aspartate

ERTS

SDBS

10

(MW=350)

100

Site

K+ + Na*
mM

Alameda Point, CA

197

Paris Island, SC

6.1

Mancelona, M|

0.14

“Typical” concentrations
of monovalent and
divalent cations




Effect of Fluid Velocity and Grain Size

PSS-Modified Fe?

00 02 04 06 08 10 1.2
Seepage Velocity (107 m/s)

Greater mobility
at higher
velocity

Lower mobility with larger
sand grain size

PSS-Modified Fe0

0.0 0.2 0.4 0.6 0.8 1.0

Collector Diameter (mm)




Effect of Hydrodynamics on Deposition
and Detachment

Torkzaban et al. Langmuir 2007,
23, 9652-9660.

Collector Size(pim)
—E— 1000
—=— 600
—A— 200

Ti e mO-- 100

10 15
Fpx 1015(N)

Tapplied IS Proportional to velocity
Is inversely proportional to d, at a constant v

Tapplied




Factors Affecting Coating Lifetime

m Desorption
@ Microbial degradation
# Biotransformations




Desorption of Coatings

Percent Remaining Adsorbed

Polymer Initial

adsorption to Adsorbed

RNIP is strong Modifier S 2weeks 4weeks 8weeks

and effectively (mg/m?2)

RS PAP2.5K | 0.85:0.23| 91+3 | 8647 | 82%55

Higher PAP 10K | 1.47+0.14 | 94 £ 4.1 91+2.5 90 + 2

MW=stronger
sorption 2weeks S5weeks 8weeks

Mitigates PSS 70K | 2.8910.59 | 94 0.5 93+0.6 93+0.6

concern of PSS 1M | 2.55£0.45 | 96 + 4.1 95 +4.7 95 +4.7

NAPL
mobilization

Kim, H-J., Lowry, G.V. et al., (in prep)




Biotransformations

Nano Fe® on Medaka Fish

Templeton, et al. (2006)
EST 40(23), 7387-7393.

Roberts, et al.
(2006) EST 41(8);

3025-3029.
- CNT ingestion
and cycling -




Summary

# Surface coatings must be considered in determining the
fate of nanomaterials in the environment
— Significant effects on aggregation and deposition
— Determining the properties and fate of the coatings is important

# Agglomeration (and likely deposition) of coated
nanomaterials occurs in a secondary minimum
— Energy determined by coating and environment properties
— Implies reversibility
— Hydrodynamics need to be included in “filtration” models

@ Nanomaterial-biota interactions are expected

— Effects of these transformations on subsequent
transport/exposure and toxicity are unknown
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M Questions?






