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Some Challenges for NanoSafety Research

Engineered nanomaterials:

= are not yet found in the natural environment or tissue in quantities sufficient for
field studies or molecular epidemiology

= are extremely diverse (compositions, morphologies, surface treatments)
---- analogy: chemicals

= are often complex, possessing multiple material features relevant to biological impacts
(unreacted precursors, attached and free ligands, adsorbed species, catalytic residues,
surface states, size/shape distributions)
---- biological responses can be quite sensitive to details

= can transform in the environment or in biological compartments

= are high-technology products subject to ongoing development. Engineered NP features
are created and controlled by modern nanosynthesis tools. There is a direct cause-effect
continuum linking synthesis/processing and bio-environmental impact.
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More Challenges for NanoSafety Research

= Engineered NPs are not yet implicated in environmental damage or disease,
which could serve to rationally define model systems and suggest mechanistic
in vitro studies.

» In such cases, it can take many years to identify risks, understand biological mechanisms.

Effects depend on dose, exposure route and frequency, susceptible populations, etc.
and may involve long latency periods

= Nanotechnology development is proceeding on a faster time scale and suffers
from the corresponding uncertainty, even when most products are likely of low risk

Diverse complex Diverse

nanomaterials transformations receptors
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Nanotechnalogy
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Bioavailability of Nickel in

Synthesis: Single-Wall Carbon Nanotubes
Liu, Gurel, Morris, Murray, Zhitkovich, Kane, Hurt
Advanced Materials, 19 2790 (2007)

SWNT or aggregate

shell damage by sonication,
oxidation, abrasion

darme / adsorption
enhancg:d f ., oncarbon
Ni-refease | extracellular solutes

biological activity of including Ni-binding ligands

C-imbedded metal
IS not obvious

o e - -

Ni-proteins B
Y _» Ni-enzymes }HIF—Ta S

,,,.z'-"":;ndosome Ni2* Fe-depletion | stabilization
ya S i i . d

i 2, A

_ o

(A & il * T \ .
e\ - N+ binding &
. lysosome /5 b Potan Gene = &
a7 cytosol Shroratn silencing nucleus
i ; A



"

Nickel Release from SWNTs
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Cytotoxicity and Cellular Uptake of Mobilized lonic Nickel

Syto-10/Ethidium Homodimer Phase Contrast Microscopy —
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- Causes > Effects

Simple Experiment

SWNTs + Cell culture medium

SWNT removal by
centrifugal ultrafiltration

solute profiling and cell culture
n “exposed” media
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Amino acid profiling after
dose-dependent SWNT exposure
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Some vitamins are depleted at CNT doses as low as 10 ug/ml !

OH

(@)
o
o
N
U1
I
o
HMT (5]
N N¢H
"
/N
HO

0.002 |

0.0015 |

0.001 | g

0. 0005 F ©

T S I
k kk * N\ % e

R R W ' U, | S |

concentrati on

H bofl avi n B otin Pantothenic Folic Acid
Acid

Ocontrol E10.01lng ONT/md NO. 1ng ONT/mt B 1ng ONT/ b E 10ng ONT/ mi




"

0.5
Result: A new “starvation mechanism” o
. . . 0.4 1 3
driven by hydrophobic depletion e
of essential micronutrients Zgﬂ-ﬁ' \"’:'Il,
Adsorption of Essential Micronutrients by Carbon o0z ’ \Qﬁ(”\(\’m‘
Nanotubes and Its Implications for Nanotoxicity Testing, i co
Guo, Von Dem Bussche, Buechner, Kane, Hurt o —— ;
Functionalized SWNT adsorption
0 4
0 ) 10 15 20 25
C, (uM)
Effect of folate
replenishment .
140 Foste \"}.b -
¥2i3 72 hours
- sivi SWNT bundle 3 Folste
= 100 exs & 1OP
g g e Cytoplasm
S 80 o0
E s 60 Folate ﬁ
.q: e Comversl
2 E Receptoy i ml'olunm
= ¥ M‘m # pokighutamatss
0 Folate
mono:lullmm ?}. Folate-meciated
0 C1 mebabolism
Fnlate- Fnlate- 10ug/ml  10ug/ml 1mg/ml 1mg/ml Felats ’é
CNT CNT  CNT  CNT transfor proteins o7z
HF"MI RPMI+ RPMI  RPMI+ RPMI RPMI+ (RFC1, Folbpi) ﬁ,
folate folate folate



Enwronmen.tal Example: CNT metals
transformation

Iron bioavailability and redox-activity in diverse CNT samples
[ Guo, Morris, Liu, Vaslet, Hurt, Kane, Chemistry of Materials, 2007 ]
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Environmental Transformation

of CNT metals
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Formulation/Coating

“TPGS as a safe, antioxidant surfactant

for processing nanotubes and fullerenes”
[Yan, Von Dem Bussche, Kane, Hurt, Carbon, 2007]

tocopherol segment linker PEG

I*-I rl - rl*! rl

(OCH,CH,),OH

The most common toxicity
mechanism for (nano)particles
IS oxidative stress

a-Tocopheryl Polyethylene Glycol Succinate vitamin E TPGS

(TPGS) is a water soluble form of vitamin E intracellular
used as a dietary supplement and drug enzymatic

delivery vehicle PEG/succinate fragments «—| /Arolysis

TPGS cleaves by enzymatic hydrolysis
to deliver the lipophilic a-tocopherol
(Vitamin E) to cell membranes, where it free tocopherol

Serves as an antioxidant (cell membrane soluble antioxidant)




TPGS is an effective dispersant
for MWNTs and shows a unique
co-self-assembly with C60
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Question 1:

Mobilized Ni (ppm)

What is origin of bioavailable metal in “purified” CNTs ?

(and why does “purification” sometimes increase it? )
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Example: targeted removal of
bioavailable metal from CNTs

+ DI H20
® Low pH media
A-ap - 9%
- //
.
yd C-AP
/// ’Il/ 6%)
-~
// ////
S D-AP
/// ///
B-AP// /// A ified /’E 2%
e f;ig'l'j,,/-’ 1% of total Ni
A ey S ¢ Mobilized
pieLB=—=mm
0 5 10 15 20 25

Total Ni in SWNT (wt%)

Question 2:

How can we target the bioactive portion of the metal

for removal (and detoxification)
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Example: stability of carbon
shells in phagolysosomes
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Final thoughts

" |t is difficult to understand origin of biological impacts without expert
knowledge of the nanomaterials themselves
- materials are complex and exhibit unexpected behaviors

" Work needed on commercial (complex) materials with feedback to suppliers
(critical for short/mid-term product safety)
- many safety problems with nano-products are solvable
- some safety solutions possible w/o waiting for complete knowledge
of biomolecular mechanisms

" Work also needed on highly controlled, idealized materials to understand
fundamental bio-environmental interactions of defined nanostructures

(important for long term safety)

" Both goals require active engagement of nanomaterials scientists
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