Aggregation and Deposition Behavior of Carbon-Based Nanomaterials in Aquatic Environments

> Menachem Elimelech Department of Chemical Engineering Environmental Engineering Program Yale University

2007 NSF Nanoscale Science and Engineering Grantees Conference, Arlington, VA, December 3-6, 2007 NSF BES 0504258 NSF BES-0646247

Engineered Carbon-Based Nanomaterials

- Exponential growth in production and potential applications
- Unique properties (shape, surface charge, reactivity)
- Environmental and health impacts are not known

Aggregation and Deposition Behavior Determines Fate and Transport

- Influences rate of settling and transport
- Removal from aqueous phase
- May influence reactivity and toxicity

Complex Interactions in Aquatic Systems NOM, biomolecules,

NOM, biomolecules, minerals/suspended solids

Aggregation Kinetics of Fullerene Nanoparticles

Fullerene Nanoparticles

Buckminsterfullerene C₆₀

 nC_{60}

Ordered Structure of C₆₀ Molecules

Buckminsterfullerene C₆₀

10 nm

 nC_{60}

Two Synthesis Methods

Sonicated C₆₀ Nanoparticles (Son-C₆₀)

Fullerene (99.9% purity)

Dissolve fullerene in toluene

Sonicate with water and ethanol for 3 hr

Filter with 0.45 then 0.2 µm filters

Aqueous C₆₀ Nanoparticles (Aq-C₆₀)

Stirring fullerene in deionized water for 40 days before filtration

Physical Characterization Son-C₆₀ Aq-C₆₀

Physical Characterization Son-C₆₀ Aq-C₆₀

Electrophoretic Mobility (EPM) in KCI

- Negatively charged
- Aq-C₆₀ more negatively charged than Son-C₆₀
- EPM becomes less negative as KCI concentration increases

ALV Light Scattering Setup

- Dynamic light scattering to derive hydrodynamic radius
- YAG laser with wavelength of 532 nm
- Scattered light intensity measured at 90° from incident beam

Time-Resolved Dynamic Light Scattering

Initial aggregation kinetics:

$$k_A \propto \left(\frac{dr_h(t)}{dt}\right)_{t \to 0}$$

Attachment Efficiency or Inverse Stability Ratio:

$$\alpha = 1/W = \frac{k_A}{k_{A,fast}}$$

Aggregation Kinetics in KCI

- Classic slow and fast aggregation regimes
- Aq-C₆₀ are much more stable (CCC of 200 mM)

Aggregation Kinetics in KCI and CaCl₂

Increased Stability in Humic Acid with NaCl

- NaCl concentration = 650 mM
- pH 8

Chen and Elimelech, J. Colloid Interface Sci. 2007, 309, 126-134

Increased Stability in Humic Acid with NaCl and MgCl₂

- NaCl concentration = 650 mM
- CCC increases in humic acid

• pH 8

Chen and Elimelech, J. Colloid Interface Sci. 2007, 309, 126-134

Steric Stabilization with Humic Acid in NaCl and MgCl₂

- Electrophoretic mobility (EPM) similar with and without humic acid
- Indication of steric stabilization

Enhanced Aggregation at High CaCl₂ Concentrations

• $CaCl_2$ concentration = 40 mM

pH 8

Enhanced Aggregation at High CaCl₂ Concentrations

 At 1 mg/L TOC, enhanced aggregation occurs above 10 mM CaCl₂

Humic Acid Clusters Bridge Fullerene Nanoparticles

100 mM MgCl₂

40 mM CaCl₂

Humic Acid Clusters Bridge Fullerene Nanoparticles

40 mM CaCl₂

Aggregation Kinetics of Multi-Walled Carbon Nanotubes (MWNTs)

MWNT Sample Preparation

- 10 mg MWNTs added to 100 mL DI water
- Sonicated for 30 minutes using ultrasonicating probe
- Supernatant collected
- Re-sonicated for 5 more cycles (30 minutes each) to obtain final sample

TEM Images of Untreated and Treated MWNTs

Untreated

Treated

- Tubes are bundled and long before treatment
- Sonication debundles and reduces average length

Diameter and Length Distributions of Treated MWNTs

- Diameter and length distributions are obtained with TEM
- Average diameter 18 nm and average length 1.5 μ m

Aggregation Kinetics with Monovalent Salt (NaCl)

Aggregation Kinetics with $CaCl_2$ and $MgCl_2$

Classic aggregation behavior with slow and fast regimes

Deposition Kinetics of Fullerene Nanoparticles

Aggregation and Deposition Behavior Determines Fate and Transport

Quartz Crystal Microbalance (QCM)

Deposition Kinetics

Attachment Efficiency

Deposition attachment efficiency:

$$\alpha_D = \frac{k_D}{k_{D,fast}}$$

Favorable (fast) deposition:

Quartz crystal

Pre-adsorption of +ve charged poly-L-lysine (PLL) on silica surface

Influence of NaCl and CaCl₂ on Deposition Kinetics

- Below CCC, as electrolyte concentration increases
 - faster deposition through charge shielding
- Towards CCC and above significant drop in deposition rate

Simultaneous Deposition and Aggregation at Higher Ionic Strength

Quartz crystal

- Aggregate formation lower convective-diffusive transport towards silica surface
- Bigger aggregates formed at later stages – deposition rate decreases even more

Release of Deposited Nanoparticles

- A Baseline (pH 5.7)
- **B** Deposition at **30 mM NaCI** and **0.6 mM CaCI₂ (both** $\alpha_{\rm D} \sim 1$)
- **C** Rinsing with respective electrolytes
- **D** Rinsing with 1 mM NaCl
- E Rinsing with DI water
- F Rinsing with DI water (pH 12.3)

Release at Stage F – sudden increase in surface potential of C_{60} nanoparticles and silica surface

Concluding Remarks

- Eelectrostatic interactions control the aggregation and deposition behavior of carbonbased nanomaterials (CBNs)
- Humic substances stabilize CBNs by electrosteric repulsion
- Under solution chemistries of natural waters, CBNs are stable and thus expected to be mobile

Acknowledgments

- NSF BES 0504258
- NSF BES-0646247

