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Engineered Carbon-Based
Nanomaterials

Ceo .
Nanoparticles

* Exponential growth in
production and
potential applications

* Unique properties
(shape, surface
charge, reactivity)

Environmental and
health impacts are not
known




Aggregation and Deposition Behavior
Determines Fate and Transport

Aqgqgregation

% = Influences rate
of settling and
transport

Deposition/
Attachment

* Removal from
agueous phase

Mineral * May influence
Surfaces reactivity and
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Complex Interactions in Aquatic
Systems

NOM, biomolecules,
minerals/suspended solids

Nanomaterials



Aggregation Kinetics of
Fullerene Nanoparticles




Fullerene Nanoparticles

Buckminsterfullerene Cg, nCyg




Ordered Structure of C,, Molecules

Buckminsterfullerene Cg, nCyg




Two Synthesis Methods

= Sonicated C,, Nanoparticles (Son-Cy,)

N

Fullerene Dissolve Sonicate with Filter with

(99.9% purity) fullerene in water and 0.45 then 0.2
toluene ethanol for 3 hr um filters

* Aqueous C,, Nanoparticles (AQ-Cyg)

Stirring fullerene in deionized water for 40 days before
filtration




Physical Characterization




Physical Characterization




Electrophoretic Mobllity (EPM) in KC]
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ALV Light Scattering Setup

= Dynamic light
scafttering to derive
hydrodynamic

\ radius

® ™ YAG laser with

= wavelength of

fFa ©32nm

= = Scattered light
) ! Intensity measured

at 90° from incident
beam
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Time-Resolved Dynamic Light

Scattering

= 200 mM NacCl
A 145 mM NacCl
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Initial aggregation kinetics:

dr, (t)
dt t—0

K, oc

Attachment Efficiency or
Inverse Stability Ratio:

kA

a=1/W =

A, fast




Aggregation Kinetics in KC|
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» Classic slow and fast
aggregation regimes

* Ag-C,, are much
more stable (CCC of
200 mM)



Aggregation Kinetics in KCl and CacCl,
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Increased Stabllity in Humic Acid
with NaCl

B No humic acid

5120 | A 1mg/L TOC :
0 ® 5mg/LTOC .
= | Diffusion-limited
- [ |
@ 100
nd
O
-
<
-
>
O
o
©
>
T

0 800 1600 2400 3200
Time (S)
=  NaCl concentration = 650 mM

* pHS8
Chen and Elimelech, J. Colloid Interface Sci. 2007, 309, 126-134 _r1



Increased Stabllity in Humic Acid
Wlth NaCI and MgCl,
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Steric Stabilization with Humic Acid
In NaCl and MgCl,
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Enhanced Aggregation at High
CaCl, Concentrations
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Enhanced Aggregation at High
CaCl, Concentrations
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* At 1 mg/L TOC, enhanced aggregation occurs
above 10 mM CacCl,



Humic Acid Clusters Bridge
Fullerene Nanoparticles

40 mM CacCl,



Humic Acid Clusters Bridge
Fullerene Nanoparticles

40 mM CacCl,



Aggregation Kinetics of
Multi-Walled Carbon
Nanotubes (MWNTS)




MWNT Sample Preparation

* 10 mg MWNTs added to 100 mL DI water

= Sonicated for 30 minutes using
ultrasonicating probe

» Supernatant collected

* Re-sonicated for 5 more cycles (30
minutes each) to obtain final sample



TEM Images of Untreated and
Treated MWNTSs

Untreated Treated

* Tubes are bundled and long before treatment
* Sonication debundles and reduces average length




Diameter and Length Distributions
of Treated MWNTSs
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* Diameter and length distributions are obtained with TEM
* Average diameter 18 nm and average length 1.5 um



Aggregation Kinetics with
Monovalent Salt (NaCl)
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Attachment Efficiency, a

Aggregation Kinetics with CacCl,
and MgCl,
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» Classic aggregation behavior with slow and fast
regimes



Deposition Kinetics of
Fullerene Nanoparticles



Aggregation and Deposition Behavior

Determines Fate and Transport

Aqgqgregation

Deposition/
Attachment

Mineral
Surfaces




Quartz Crystal Microbalance (QCM)

Flow Cell: Sauerbrey
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Deposition Kinetics

Frequency Shift (Hz)
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Attachment Efficiency

Frequency Shift (Hz)
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Deposition attachment

efficiency:

Favorable (fast) deposition:

Quartz crystal

Pre-adsorption of +ve
charged poly-L-lysine
(PLL) on silica surface



Influence of NaCl and CacCl, on
Deposition Kinetics
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* Below CCC, as electrolyte concentration increases
— faster deposition through charge shielding

* Towards CCC and above — significant drop in
deposition rate
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Simultaneous Deposition and
Aggregation at Higher lonic Strength

At 100 mM NacCl: 0.5 ————————————
- Non-linear |
T 0.0 “ deposition ]
— behavior
— ol — 77
= |
S > -1.0}
O '
3
S -1.5f
g 5
— Y AL
Quartz crystal 0 200 40 60 80 100

* Aggregate formation — | Time (min)
lower convective-diffusive ® Blgger aggregates formed

transport towards silica at later stages —
surface deposition rate decreases

even more
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Release of Deposned Nanoparticles

Frequency Change (Hz)
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A — Baseline (pH 5.7)

B — Deposition at 30 mM NaCl and
0.6 mM CacCl, (both ay ~ 1)

C — Rinsing with respective
electrolytes

D — Rinsing with 1 mM NacCl

E — Rinsing with DI water

F — Rinsing with DI water (pH 12.3)
Release at Stage F — sudden
Increase in surface potential of

Cso Nanoparticles and silica
surface



Concluding Remarks

» Eelectrostatic interactions control the
aggregation and deposition behavior of carbon-
based nanomaterials (CBNS)

* Humic substances stabilize CBNs by
electrosteric repulsion

» Under solution chemistries of natural waters,
CBNs are stable and thus expected to be
mobile
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