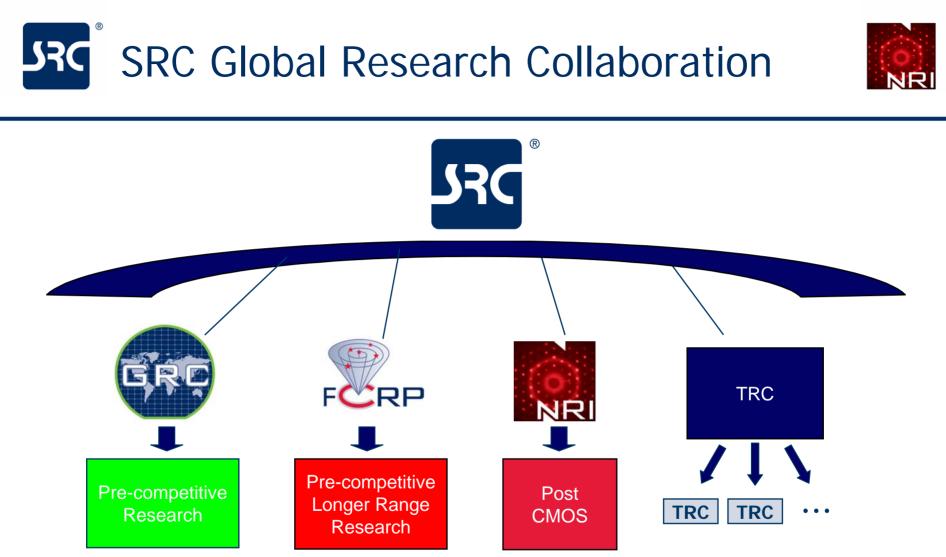


PIONEERS IN COLLABORATIVE RESEARCH®

The Semiconductor Industry's Nanoelectronics Research Initiative

Jeff Welser, Director SRC NRI December, 2007



- 2001-2004: Defining Research Needs
 - ITRS-Emerging Research Device Technical Working Group
 - NSF-SRC Industry-Academia-Government Silicon Nanoelectronics and Beyond (SNB) Workshops
 - SIA Technology Strategy Committee workshops

> Defined 13 Research Vectors of primary importance for finding the next switch

March 2004:

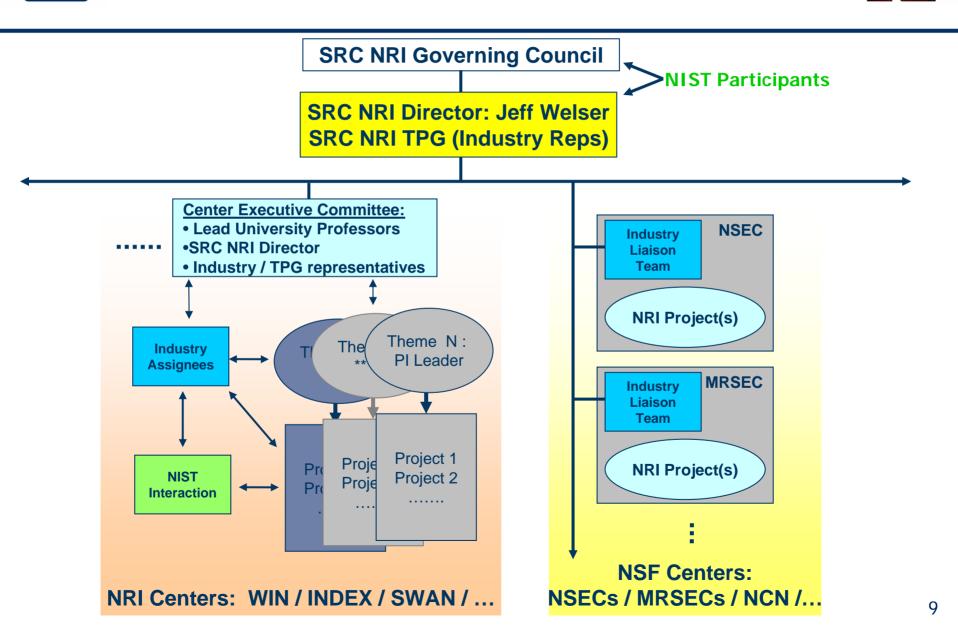
- SIA White Paper on Post-CMOS presented to SIA Board
- SIA Board Resolution for formation of NRI
- March 2005:
 - Six Companies sign NRI Participation Agreement
 - AMD, Freescale, IBM, Intel, Micron, TI
 - NERC incorporated to manage NRI
 - Governing Council (GC) and Technical Programs Group (TPG) formed with one representative per participating company
- September 2005: First NRI and NSF Solicitations released
- January 2006: Research Programs started
- September 2007: NIST joins NRI

GRC – Global Research Collaboration FCRP – Focus Center Research Program NRI – Nanoelectronics Research Initiative TRC – Topical Research Collaboration

- NRI Mission: Demonstrate novel computing devices capable of replacing the CMOS FET as a logic switch in the 2020 timeframe.
 - These devices should show significant advantage over ultimate FETs in power, performance, density, and/or cost to enable the semiconductor industry to extend the historical cost and performance trends for information technology.
 - To meet these goals, NRI is focused primarily on research on devices utilizing new computational state variables beyond electronic charge. In addition, NRI is interested in new interconnect technologies and novel circuits and architectures, including non-equilibrium systems, for exploiting these devices, as well as improved nanoscale thermal management and novel materials and fabrication methods for these structures and circuits.
 - Finally, it is desirable that these technologies be capable of integrating with CMOS, to allow exploitation of their potentially complementary functionality in heterogeneous systems and to enable a smooth transition to a new scaling path.

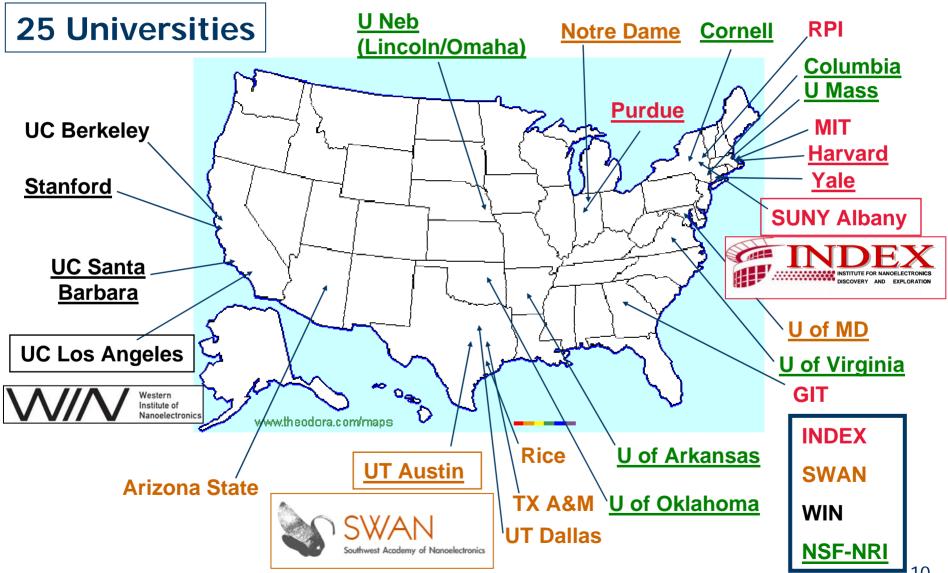
- Computational State Vector other than Electronic Charge (e.g. "bits" represented by spins)
 New scaling path
- Non-equilibrium Systems
 - Lower power, less heat
- Novel Data Transfer Mechanisms
 - Overcome RC limits
- Nanoscale Thermal Management
 - Cooler operation, manage power density
- Directed Self-assembly of such structures
 - Less variability, higher density, more reliable, lower cost

Strong Focus in NRI on the first Research Vector


SRO **NRI Sponsored Research Programs**

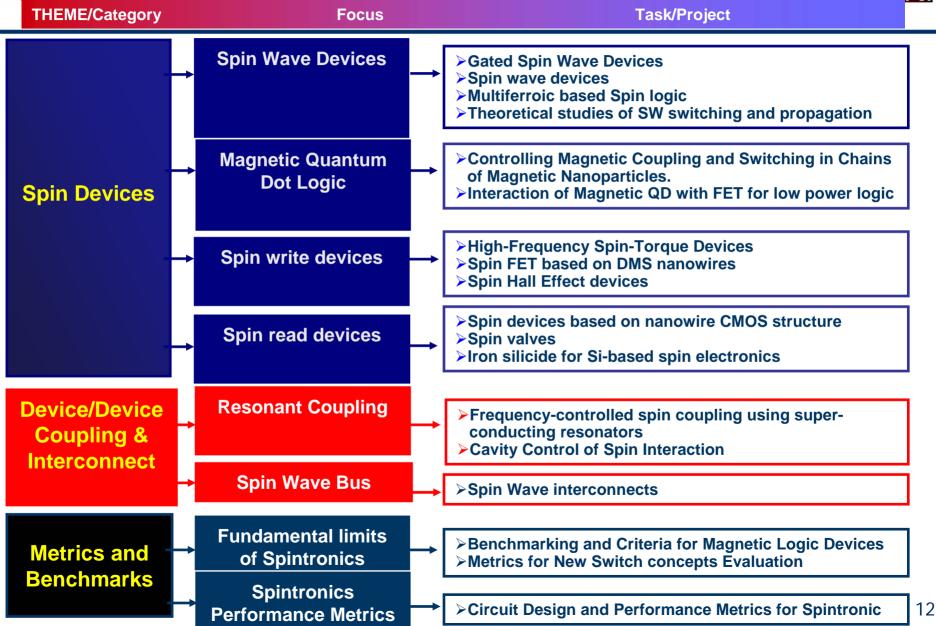
Leveraging industry, university, and both state & fed government funds, and driving university nanoelectronics infrastructure

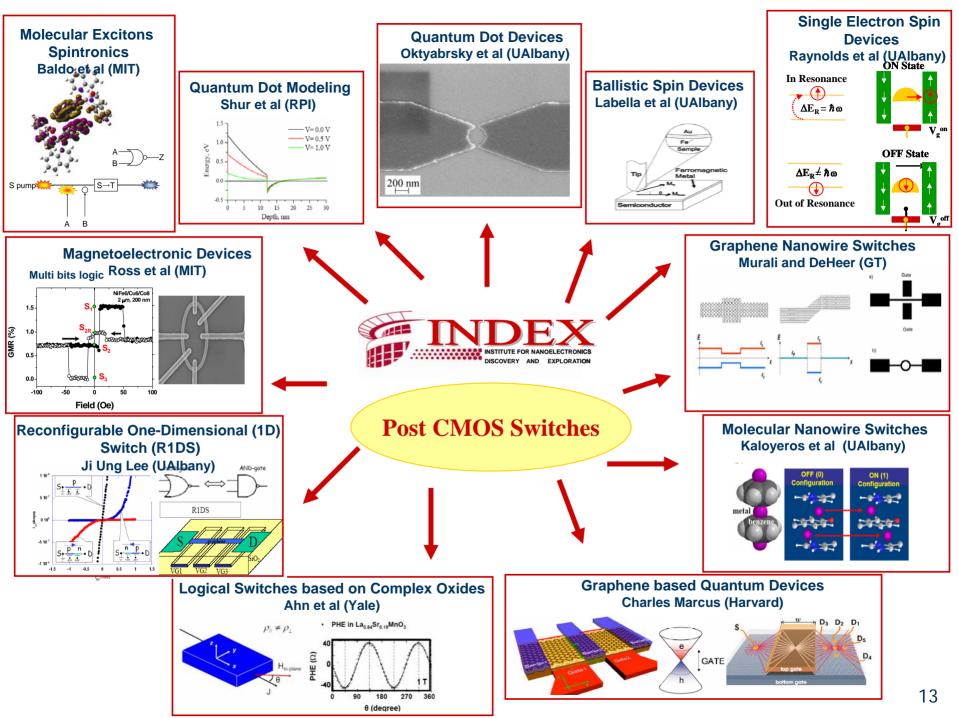
Western Institute of Nanoelectronics	INSTITUTE FOR NANGELECTRONICS DISCOVERY AND EXPLORATION	SWAN Southwest Academy of Nanoelectronics	NSF -
WIN Western Institute of Nanoelectronics	INDEX Institute for Nanoelectronics Discovery & Exploration	SWAN SouthWest Academy for Nanoelectronics	NSF NSEC / MRSEC /NCN Supplemental Funding
UCLA, UCSB, Berkeley, Stanford	SUNY-Albany , GIT, Harvard, MIT, Purdue, RPI, Yale	UT-Austin , UT-Dallas, TX A&M, Rice, ASU, Notre Dame, U of MD	Funding 12 projects at 10 NSF centers
Theme 1: Spin devices Theme 2: Spin circuits Theme 3: Benchmarks & metrics	Task I: Novel state-variable devices Task II: Fab & Self- assembly Task III: Modeling & Arch Task IV: Theory & Sim Task V: Roadmap	Task 1: Logic devices with new state-variables Task 2: Materials & structs Task 3: Self-assembly & thermal mgmt Task 4: Interconnect & Arch Task 5: Nanoscale characterization	Broad work on various topics – also leverages other work in the centers


SRC NRI Management Structure

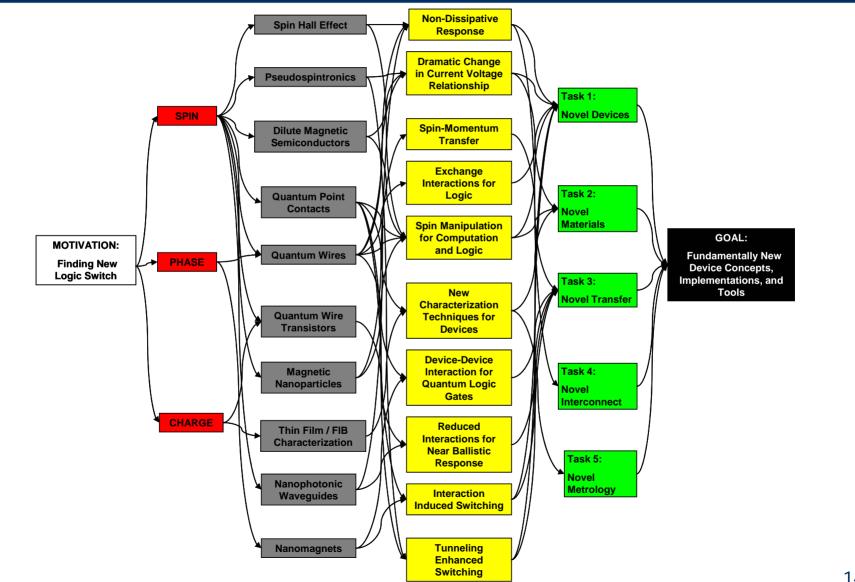
NR

NRI Funded Universities

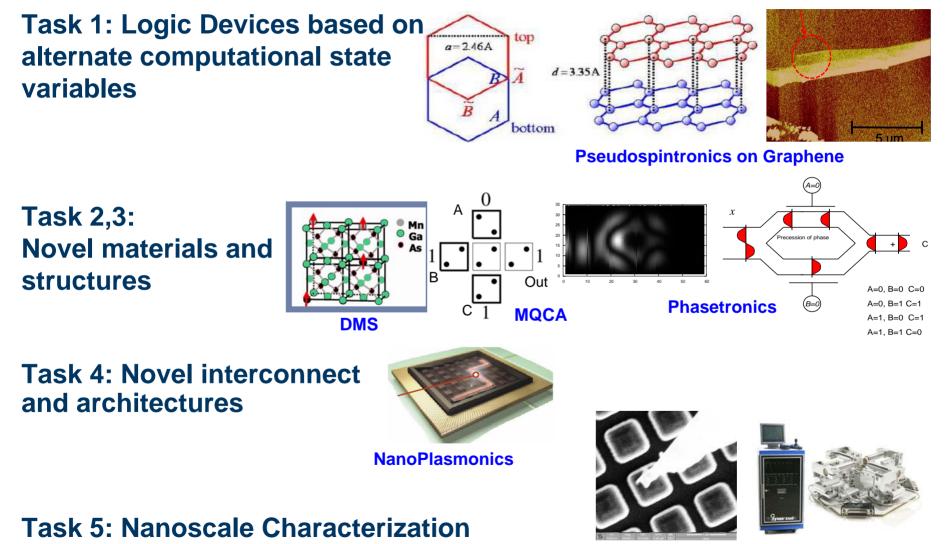



- Key challenge for NRI: Creating a *directed*, *basic science* research program
- Research results presented at first on-site annual reviews indicate strong progress already in three key areas to achieve this:
 - Studying new science phenomena with device potential
 - Several promising new effects shown (e.g. Pseudospintronics, BAMR)
 - Linking the scientists to the engineers, to insure research focus is on the key device issues
 - Even for new phenomena, presentations included topics like potential logic gate structure, prospects for room temperature operation, power dissipation, connecting devices, etc.
 - Linking work across groups / universities / centers to maximize progress
 - Modeling of the Spin Hall effect at Purdue to understand the experimental results from UCB
- Points to initial success in focusing the science towards switch technology
 - Getting the right information early, to direct research along most promising paths

SRC[®] WIN Technical Roadmap



Novel Transistor Research



Nano Manipulator/ Probe system

SRC[®] NSF NSEC/MRSEC Nanoelectronics Areas*

Question number

5

3 Primary focus

- 2 Secondary focus
- 1 Very little or no focus

Question number		1	2	3	4	5	
		Alternative	Non	Novel			
		State	equilibrium	information	phonon	self	
Institution		variables	devices	transfer	engineering	assembly	
NSEC Centers							
Electronic Transport in Molecular	Columbia University						
Nanostructures, NSEC	Columbia Oniversity	1	2	1	2	2	
Nanoscale Systems and their Device Applications, NSEC	Harvard University	3	3	3	3	3	
Integrated Nanopatterning and	Northwestern						
Detection, NSEC	University	1	2	1	1	3	
Center for High Rate	Northeastern						
Nanomanufacturing	University	2	1	1	1	3	
Stanford Center for Probing the							
Nanoscale	Stanford	2	1	1	1	1	
Center for Nanoscale Electrical-							
Mechanical Manuffacturing Systems	UIUC	1	1	1	2	2	
Nanoscience in Biological and							
Environmental Engineering (CBEN)	Rice University	1	1	1	1	1	
	MRSEC	Centers					
Biomaterial microstructures	UCSB	2	1	1	1	3	
Grain boundaries, metals / ceramics;							
simulations	CMU	1	1	1	1	1	
Princeton Center for Complex							
Materials	Princeton	3	1	1	1	3	
Center for Nanostructered Materials	Cornell	2	1	1	1	2	
Nanomagnetisms -fundamental							
interactions and applications	U of Nebraska	2	1	1	1	2	
Nanoscopic design, quantum dots,							
surfaces	U ov Virginia	2	1	1	1	3	
Transport in nanostructured magnetic							
materials	U of Alabama	3	3	1	1	2	
Molecular motors	Penn State University	1	1	2	1	3	
The Center for the Science and	California Institute of						
Engineering of Materials (CSEM),	Technology	2	2	3	2	1	
Laboratory for Research on the							
Structure of Matter	U of Pennsylvania	1	1	1	1	1	
The Center for Materials Science and							
Engineering (CMSE)	MIT	2	1	1	1	2	
Directed Assembly of Nanostructures,	Rensselaer Polytech						
NSEC	Inst	2	1	1	2	3	
Structural integrated films containing							
nanoparticles	Columbia University	1	1	1	1	3	

1

2

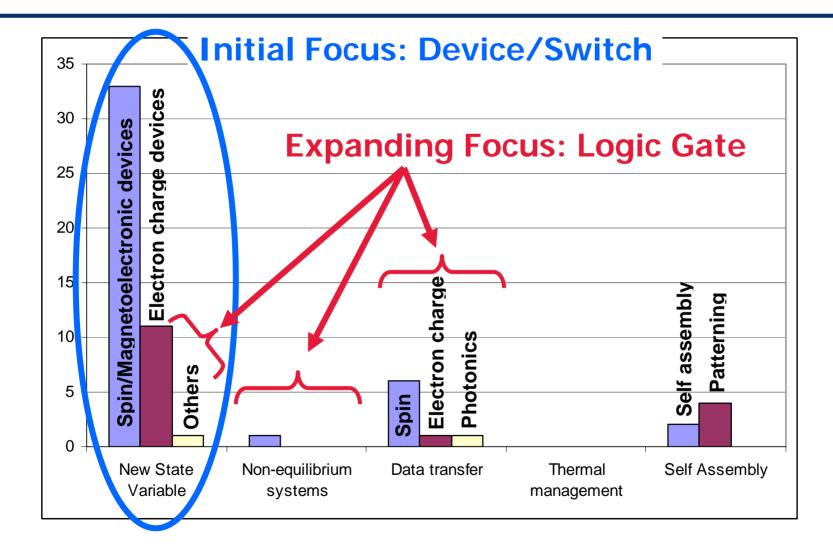
3

Λ

*NSF-funded centers, capabilities self-assessed by Center directors

Joint program established with NSF to fund NRI-related research at NSF centers

РІ	Institution	Center	Center Name	Title of Supplement
Lundstrom, Mark	Purdue U	NCN	Network for Computational Nanotechnology	Exploratory Theory, Modeling, and Simulation for the NRI
Yardley, James T.	Columbia U	NSEC	Columbia Center for Electronic Transport in Molecular nanostructures	Non-equilibrium Quantum Coherent Devices in 1-D materials
Westervelt, Robert	Harvard U	NSEC	Science of Nanoscale Systems and their Device Applications	Ultrasmall Nanowire and Oxide Switches
Hawker, Craig	UCSB (Stanford, U Mass)	MRSEC	MRSEC at UCSB	Development of Next Generation Devices using Nanolithographic Techniques
Hull, Robert	U Virginia (Notre Dame)	MRSEC	Center for Nanoscopic Materials	Directed Assembly of Epitaxial Semiconductor Nanostructures for Novel Logic Switches
Johnson, Matt	U. Arkansas/ U Oklahoma	MRSEC	Center for Semiconductor Physics in Nanostructures	Nanoferroelectric Random Access Memory



NSF and NRI selected six new projects at NSF centers for 2007-2009

РІ	Institution	NSF Center Type	Center Name	Title of Supplement
Tsymbal, Evgeny / Sellmyer, David; Belashchenko, Kirill; Sabirianov, Renat	U.Neb-Lincoln (U.Neb-Omaha)	MRSEC	Q-SPINS: Quantum and Spin Phenomena in Nanomagnetic Structures (www.mrsec.unl.edu)	"Multiferroic interfaces: new paradigms for functional switching"
Hull, Robert / Wolf, Stuart; Floro, Jerrold; Awschalom, David; Snider, Greg	U. Virginia (UCSB / Notre Dame)	MRSEC	Center for Nanoscopic Materials Design (www.mrsec.virginia.edu)	"Coherent Spin Dynamics in Single Ion doped Semiconductors: Towards a Coherent or Quantum Spin Switch"
Lundstrom, Mark / Alam, Muhamad; Datta, Supriyo; Klimeck, Gerhard; Roy, Kaushik	Purdue	NCN	The Network for Computational Nanotechnology (www.ncn.purdue.edu)	"Exploratory Theory, Modeling, and Simulation for the Nanoelectronics Research Initiative"
Ahn, Charles (Tully, John)	Yale	MRSEC	Center for Research on Interface Structures and Phenomena (www.crisp.yale.edu)	"Design and fabrication of magnetic-based devices with complex oxide materials"
MacDonald, Allan / DasSarma, Sankar (Williams, Ellen)	UMD (UT-Austin)	MRSEC	Materials Research Science and Engineering Center (http://mrsec.umd.edu)	"Pseudospintronics"
Kan, Edwin (Buhrman, Robert)	Cornell	NSEC	Center for Nanoscale Systems in Information Technologies (http://www.cns.cornell.edu/)	"Controlled Orbital Hybridization in the Carbon Nanotube Quantum Modulated Transistor (CNT- QMT)"

Overview of Current NRI Projects

Questions? More Information?

Jeff Welser, Director jeff.welser@src.org

Allison Hilbert, Executive Assistant <u>allison.hilbert@src.org</u>