

2020 Information Processing Technologies: A Fundamental Physics Perspective

Ralph K. Cavin III and Victor V. Zhirnov

Semiconductor Research Corporation

National Science Foundation

Arlington, VA, December 5, 2007

Outline

Devices

- What are the fundamental physical limits for binary switches?
- Could state variables different from charge provide improved performance?
- What can we do about all the heat?
- Are there more effective computing models than von Neumann?
 - Brain?
- Nanofabrication
- Fearless projections for 2020 technology and beyond

CMOS scaling on track to obtain physical limits for electron devices

Moore's Law: Transistors per chip

Computing Power: MIPS (μ) vs. BIT (β)

Summarizing, what we have learned so far from fundamental physics

1) Minimum energy per binary transition **Boltzmann** $E_{bit}^{min} = k_B T \ln 2$

2) Minimum distance between two distinguishable states

 $\Delta x \Delta p \ge \hbar$ Heisenberg $x_{\min} = a = \frac{\hbar}{\sqrt{2mkT \ln 2}} = 1.5nm(300K)$ (electronic switch)

3) Minimum state switching time

$$\Delta E \Delta t \ge \hbar$$
Heisenberg
$$t_{st} = \frac{\hbar}{kT \ln 2} = 4 \times 10^{-14} s(300K)$$
Total Power Dissipation
(@Ebit= kTln(2))
- A Catastrophe!
$$P_{chip} = 4.74 \times 10^{6} \frac{W}{cm^{2}}$$

Elementary model of heat transfer -Zero-*T Heisenberg limit*

The rate of energy transfer from an atom to a heat transfer agent (e.g. another atom, electron, photon):

The maximum amount of heat transfer in a system of two heat carriers, e.g. atomatom, atom-electron, atom-photon

Limits of Cooling?

Limits of Heat Transfer to Ambient

Emerging Research Logic Devices

2003 International Technology Roadmap for Semiconductors

						¢		
Device	FET	RSFQ	1D structures	Resonant Tunneling Devices	SET	Molecular	QCA	Spin transistor
Cell Size	100 nm	0.3 µm	100 nm	100 nm	40 nm	Not known	60 nm	100 nm
Density (cm ⁻²)	3E9	1E6	3E9	3E9	6E10	1E12	3E10	3E9
Switch Speed	700 GH z	1.2 THz	Not known	1 THz	1 GHz	Not known	30 MHz	700 GHz
Circuit Speed	30 GHz	250– 800 GHz	30 GHz	30 GHz	1 GHz	<1 MHz	1 MHz	30 GHz
Switching Energy, J	2×10 ⁻¹⁸	>1.4×10 ⁻¹⁷	2×10^{-18}	>2×10 ⁻¹⁸	>1.5×10 ⁻¹⁷	1.3×10^{-16}	>1×10 ⁻¹⁸	2×10 ⁻¹⁸
Binary Throughput, GBit/ns/cm ²	86	0.4	86	86	10	N/A	0.06	86

We HAVE IDENTIFIED NO VIABLE EMERGING LOGIC TECHNOLOGIES for Information Processing beyond CMOS 11

New Logic Device Concepts are Needed!

ITRS ERD assessment:

we HAVE NO VIABLE EMERGING LOGIC TECHNOLOGIES for Information Processing beyond CMOS.

WHY? For fundamental reasons, CMOS appears to be the preferred solution for electron-based logic

- Density
- Speed
- Energy

Can we dramatically improve information processing power by utilizing new computational models? 12

Most complex information-management system in the universe...

N

	Dell 8250 (Pentium® 4)	Brain		
Mass	~25 kg	1.4 kg		
/olume	34200 cm ³	1350 cm ³		
MIPS	~10 ³ MIPS	10 ⁸ MIPS		
BIT	<10 ¹⁶ bit/s	10 ¹⁹ bit/s		
Power	200 W	30 W (max)		
	~ 5 MIPS / W	3x10 ⁶ MIPS / W		
5x10 ⁶ k _B T / bit		700 k _B T/bit		

When will computer hardware match the

A CMOS machine at the limits of scaling would use prodigious amounts of power

Computing Power: MIPS (μ) vs. BIT (β)

Turing-Heisenberg Rapprochement?

- Biological systems achieve extraordinary performance for cognitive applications with relatively low energy utilization
 - Does the brain operate at the threshold of error creation to obtain low energy utilization?
 - The 3D structure of the brain may be a success factor
 - Benefits of energy savings due multicore organization can be extended in 3D
 - More communication energy savings due to shorter interconnects
 - Less energy costs for fan out
 - Very efficient heat removal by 3D microchannel cooling

Nanofabrication

Research in Nanodevices will have a value if and only if

we can find a way to cost-effectively make working circuits by connecting together TRILLIONS of such devices

Can we 'teach' matter to organize into structures that we desire?

Manufacturing is Information Transfer

- Foundational knowledge base is needed

Complex Matter=Energy+Information+Material Subtractive Assembly diffused concentrated Light, e-**ENERGY** beam etc. global external local internal 100011001100101011100 database database MASK **INFORMATION** 13244242424 14232341324 23234122431 diffused concentrated 14235142323 23231423212 MATERIAL Silicon Waste

Energetics of Assembly: Biological Inspiration The 9-month development of a newborn:

Conventional Subtractive Manufacturing: Energy per atom $\mathcal{E}_{total} = 2 \times 10^{-15} \frac{J}{at}$	 Input: Weight of newborn m=3 kg Composition: 70% H₂O + 30% C₃H₆O₂N (amino acids) Additional calories for pregnant woman: 300 cal/day Time: 9 month Calculation: Total additional energy of pregnancy: E=
Assembly with less energy would ease manufacturing constraints	• Number of assembled molecules: • Energy per assembled molecule: • Assembly rate: N/t=2x10 ¹⁸ molecule/s

Assume a transistor occupies a volume of ~ 1x10⁶ nm³, corresponding to ~50M silicon atoms. At biological growth rates, a 1Gb chip could be built in about 5 s.

Can we encourage matter to assemble into a structure we want?

The key task is to find the information sources and channels to convey the assembly instructions. For

example, can we learn secrets of living matter to build things?

"We have no theory, that gives us a metric for the information embodied in a physical structure...This missing metric (may) be the most fundamental gap in the theoretical underpinnings of information science".

Frederick Brooks (IBM 360 Architect, currently UNC Chapel Hill), 2003

A Scenario for IC Technology Transformation

