2020 Information Processing Technologies: A Fundamental Physics Perspective

Ralph K. Cavin III and Victor V. Zhirnov
Semiconductor Research Corporation

National Science Foundation
Arlington, VA, December 5, 2007

Outline

- Devices
*What are the fundamental physical limits for binary switches?
* Could state variables different from charge provide improved performance?
- What can we do about all the heat?
- Are there more effective computing models than von Neumann?
* Brain?
- Nanofabrication
- Fearless projections for 2020 technology and beyond

CMOS scaling on track to obtain physical limits for electron devices

Moore's Law: Transistors per chip

Source: Stan Wiliams, Hewlett Packard

Why scaling? - To increase the Binary Information Throughput (BIT)

Computing Power: MIPS (μ) vs. BIT (β) SR

$$
E_{b}^{\min }=k_{B} T \ln 2
$$

Nanoscale Devices

This strtucture cannot be ' used for representation/processing information

An energy barrier is needed to preserve a binary state

Summarizing, what we have learned so far from fundamental physics

1) Minimum energy per binary transition Boltzmann

$E_{b i t}^{\min }=k_{B} T \ln 2$

2) Minimum distance between two distinguishable states

$$
\Delta x \Delta p \geq \hbar \xrightarrow[\text { Heisenberg }]{\longrightarrow} x_{\min }=a=\frac{\hbar}{\sqrt{2 m k T \ln 2}}=1.5 \mathrm{~nm}(300 \mathrm{~K})
$$

3) Minimum state switching time

$$
t_{s t}=\frac{\hbar}{k T \ln 2}=4 \times 10^{-14} s(300 K)
$$

Total Power Dissipation (@Ebit= $k T \ln (2)$)

- A Catastrophe!

$$
P_{\text {chip }}=4.74 \times 10^{6} \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}
$$

Elementary model of heat transfer -Zero-T Heisenberg limit

The rate of energy transfer from an atom to a heat transfer agent (e.g. another atom, electron, photon):
 a system of two heat carriers, e.g. atomatom, atom-electron, atom-photon

Limits of Cooling?

Heisenberg-
Boltzmann constant

Air: $\mathrm{n}_{\mathrm{s}} \sim 10^{13} \mathrm{~cm}^{-2}$

Air

Limits of Heat Transfer to Ambient

Solid-Air

Solid-Water

Heisenberg-Boltzmann Limit
$\dot{q}_{\max }=650 \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}$ Coherent heat transfer $\square \dot{q}_{\max }=3.5 \times 10^{6} \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}$

$$
\left.\dot{q}_{\text {air }}=172 \frac{\mathrm{~W}}{\mathrm{~cm}^{2}} \downarrow \square \begin{array}{l}
\text { Limits of forced } \\
\text { liquid/air cooling }
\end{array}\right) \neg \dot{q}_{\text {water }}=2.6 \times 10^{5} \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}
$$

$$
\dot{q}_{\text {exp }}=64 \frac{\mathrm{~W}}{\mathrm{~cm}^{2}} \text { done with all Demonstrated }{ }^{\text {Ne ale }}
$$

$$
\frac{q_{\max }}{q_{\exp }^{* a}} \approx 10 \longmapsto \text { Gap } \Rightarrow \frac{q_{\max }}{q_{\exp }} \approx \underbrace{m_{\text {ix }}}_{10}
$$

Emerging Research Logic Devices

 2003 International Technology Roadmap for Semiconductors| Device | \square | () | - | 」 | $\stackrel{-T-1]}{\square}$ | - | | $\stackrel{\leftarrow}{\square}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | FET | RSFQ | 1D structures | Resonant
 Tunneling Devices | SET | Molecular | QCA | Spin transistor |
| Cell Size | 100 nm | $0.3 \mu \mathrm{~m}$ | 100 nm | 100 nm | 40 nm | $\begin{gathered} \text { Not } \\ \text { known } \end{gathered}$ | 60 nm | 100 nm |
| Density $\left(\mathrm{cm}^{-2}\right)$ | 3E9 | 1E6 | 3E9 | 3E9 | 6E10 | 1E12 | 3E10 | 3E9 |
| Switch Speed | $\begin{gathered} 700 \mathrm{GH} \\ \mathrm{z} \end{gathered}$ | 1.2 THz | Not known | 1 THz | 1 GHz | Not known | 30 MHz | 700 GHz |
| Circuit Speed | 30 GHz | $\begin{gathered} 250- \\ 800 \mathrm{GHz} \end{gathered}$ | 30 GHz | 30 GHz | 1 GHz | $<1 \mathrm{MHz}$ | 1 MHz | 30 GHz |
| Switching Energy, J | 2×10^{-18} | $>1.4 \times 10^{-17}$ | 2×10^{-18} | $>2 \times 10^{-18}$ | $>1.5 \times 10^{-17}$ | 1.3×10^{-16} | $>1 \times 10^{-18}$ | 2×10^{-18} |
| Binary
 Throughput, GBit/ns/cm ${ }^{2}$ | 86 | 0.4 | 86 | 86 | 10 | N/A | 0.06 | 86 |

We HAVE IDENTIFIED NO VIABLE EMERGING LOGIC
TECHNOLOGIES for Information Processing beyond CMOS

New Logic Device Concepts are Needed!

ITRS ERD assessment:

we HAVE NO VIABLE EMERGING LOGIC TECHNOLOGIES for Information Processing beyond CMOS.

WHY? for fundamental reasons, сMOs appears to be the preferred solution for electron-based logic

- Density
- Speed
- Energy

Can we dramatically improve information
 processing power by utilizing new computational models?

Most complex information-management

 system in the universe...| | Dell 8250 (Pentium® 4) | Brain |
| :---: | :---: | :---: |
| Mass | $\sim 25 \mathrm{~kg}$ | 1.4 kg |
| Volume | $34200 \mathrm{~cm}^{3}$ | $1350 \mathrm{~cm}^{3}$ |
| MIPS | $\sim 10^{3} \mathrm{MIPS}$ | $10^{8} \mathrm{MIPS}$ |
| BIT | $<10^{16} \mathrm{bit} / \mathrm{s}$ | $10^{19} \mathrm{bit} / \mathrm{s}$ |
| Power | 200 W | 30 W (max) |
| | ~ 5 MIPS / W | 3×10^{6} MIPS / W |
| | $5 \times 10^{6} \mathrm{k}_{\mathrm{B}} \mathrm{T} / \mathrm{bit}$ | $700 \mathrm{k}_{\mathrm{B}}$ T/bit |

When will computer hardware match the

A CMOS machine at the limits of scaling would use prodigious amounts of power
human brain?

Computing Power: MIPS (μ) vs. BIT (β)

Sources: The Intel Microprocessor Quick Reference Guide and

Turing-Heisenberg Rapprochement?

Observations on Biological Computation

- Biological systems achieve extraordinary performance for cognitive applications with relatively low energy utilization
* Does the brain operate at the threshold of error creation to obtain low energy utilization?
* The 3D structure of the brain may be a success factor
- Benefits of energy savings due multicore organization can be extended in 3D
- More communication energy savings due to shorter interconnects
- Less energy costs for fan out
- Very efficient heat removal by 3D microchannel cooling

PIDNEERGIN

Nanofabrication

Research in Nanodevices will have a value if and only if we can find a way to cost-effectively make working circuits by connecting together TRILLIONS of such devices

Can we 'teach' matter to organize into structures that we desire?

Manufacturing is Information Transfer

- Foundational knowledge base is needed

Complex Matter=Energy+Information+Material Subtractive

Assembly
Light, ebeam etc.
concentrated
diffused
ENERGY

global external database
concentrated

DNA
13244242424
14232341324
23234122431

14235142323
23231423212

Energetics of Assembly: Biological Inspiration $52 C$
 The 9-month development of a newborn:

Conventional Subtractive Manufacturing:
Energy per atom

$$
\varepsilon_{\text {total }}=2 \times 10^{-15} \frac{\mathrm{~J}}{a t}
$$

Assembly with less energy would ease manufacturing constraints

```
Input:
-Weight of newborn m=3 kg
-Composition: 70% H2O + 30% C C H H O}\mp@subsup{\textrm{O}}{2}{}\textrm{N}\mathrm{ (amino acids)
-Additional calories for pregnant woman: 300 cal/day
-Time: 9 month
```

Calculation:
-Total additional energy of pregnancy: $E=$
300cal/day*4.18J/cal*9mon*30day/mon=3.3.3.580 . 1

- Number of assembled molecules: $\quad N=\frac{N_{A}}{M} m=4.62 \times 10^{25}$
- Energy per assembled molecule: $\varepsilon=\frac{E}{N}=7.34 \times 10^{-21} \overline{\text { molecule }}$
-Assembly rate: $\mathrm{N} / \mathrm{t}=2 \times 10^{18}$ molecule/s

Assume a transistor occupies a volume of $\sim 1 \times 10^{6} \mathrm{~nm}$, corresponding to $\sim 50 \mathrm{M}$ silicon atoms. At biological growth rates, a 1Gb chip could be built in about 5 s.

Can we encourage matter to assemble into a structure we want?

'Self-assembly' today: Regular arrays of simple elements...

The key task is to find the information sources and channels to convey the assembly instructions. For

 example, can we learn secrets of living matter to build things?"We have no theory, that gives us a metric for the information embodied in a physical structure...This missing metric (may) be the most fundamental gap in the theoretical underpinnings of information science".

Frederick Brooks (IBM 360 Architect, currently UNC Chapel Hill), 2003

A Scenario for IC Technology Transformation

