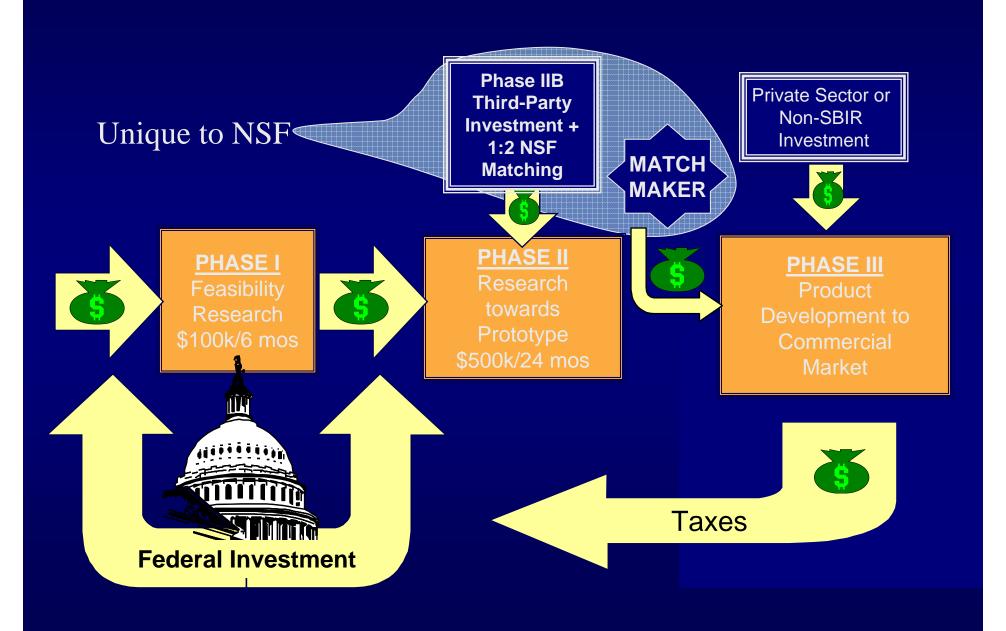
University –Industry Interactions SBIR/STTR Portfolio for Nanotechnology at NSF

T. James Rudd, Ph. D.
Industrial Innovation and Partnerships
National Science Foundation

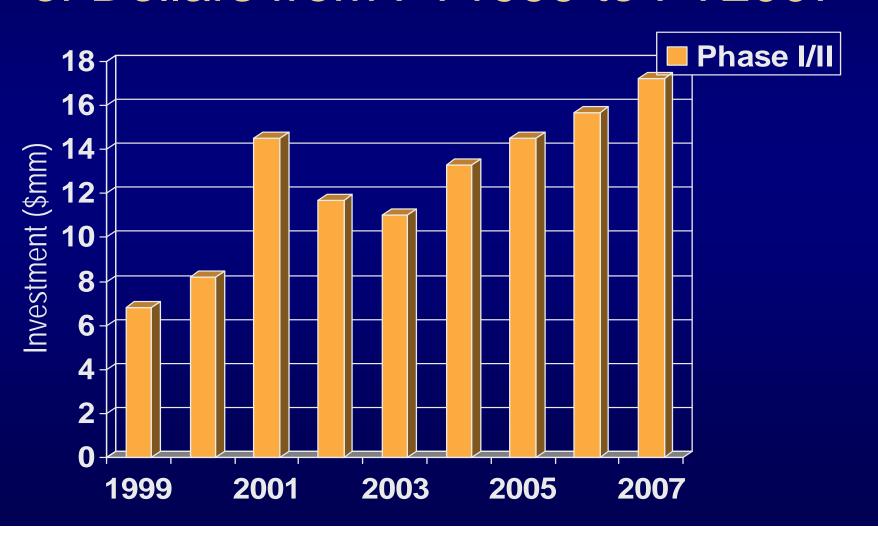
Nanoscale Science and Engineering 2007 NSF Grantees Conference Arlington (VA), December 3rd, 2007 Small Business Innovation
Research/Small Business
Technology Transfer
(SBIR/STTR) Program at the
National Science Foundation

Topics Supported at NSF


- Electronics
- Advanced Materials
- Biotechnology
- Information Technology
- Special Topics
 - Manufacturing Innovation
 - Security Technologies

Currently Expecting Proposals (Solicitation: NSF 07-586)

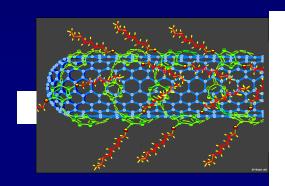
- Proposals due December 4
 - Emerging Opportunities 3 broad subtopics
 - Bio & Environmental Technologies (BE)
 - Components & Systems (CS)
 - Software & Services (SS)


NSF SBIR/STTR Innovation Model

Nanotechnology Thrusts in SBIR/STTR at NSF

- Synthesis and Processing techniques for synthesis, fabrication, and processing of nanostructures
- Materials, Devices, Systems, and Architectures techniques for processing and converting molecules and nanoprecursors into functional nanostructures; nanostructured materials, nanocomponents and nanodevices
- Nanomanufacturing techniques for synthesis and scale-up of structures, devices and systems employing nanostructured materials and processes with nanoscale control

NSF SBIR/STTR Grants in NANOTECHNOLOGY in Millions of Dollars from FY1999 to FY2007


Major Product Areas Funded

- Nanoparticle composites
- Nanofilter membranes
- Nanocrystalline coatings
- Nanobiomaterials
- Nanoelectronics
- Nanophotonics
- Nanomagnetics
- Nanomanufacturing

Nanoparticle composites

Eltron Research Inc Richard A. Bley

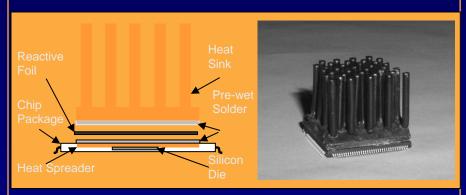
Incorporation of Carbon Nanotubes Into Nylon Filaments

Goals

- To Incorporate SWNTs Into Nylon Filaments
- To Make Very Strong, Light Weight Structural Materials Using This Polymer Composite
- To Make Electrically and Thermally Conductive Composites For Use In EMI Shielding And As Adhesives

Technical Objective

- Formulate Synthesis For Making Functionalized Polymer That Wraps SWNT
- Develop Viable Functional Groups
- Develop Methods For Making Composites
- Determine Mechanical, Electrical and Thermal Properties


Commercialization Strategy

- Patent Application
 U.S. Provisional Application Serial No. 60/497,896.
 - U.S Patent Application Serial No. 10/927,628.
- Have Interested Corporation (Henkel) But Still Need to Demonstrate Method Produces Desired Properties in Composites

Reactive Nanotechnologies

Tim Weihs & Jai Subramanian

Reactive Mounting of Heat Sinks

Goals

Heat sink to die/spreader optimization and characterization.

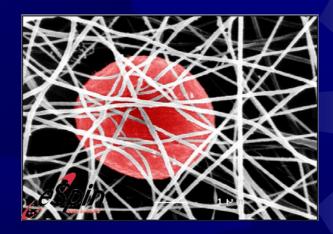
- Determine optimal configuration for heat sink mounting. (April 2004)
- Optimize thermal performance of above configuration. (October 2004)
- Optimize and characterize performance of heat sink to silicon joints. (April 2005)
- Gather long term reliability data and complete characterization efforts. (October 2005)

Technical Objectives

- Select configuration for mounting heat sinks to dies/spreaders.
- Optimize configuration for best thermal performance and ease of commercial insertion.
- 3. Characterize configuration to demonstrate reliability and repeatability.

Commercialization Strategy

- Market strategy: engage end-users and partner with established companies in the adjacent markets: solders, adhesives, etc.
- Reach broader market by:
 - Leveraging performance and reliability data results from the grant work.
 - Leveraging capabilities in shaping foils, ignition methods and foil-solder pre-forms
 - Aligning closely with market enablers like sub-con. assemblers and thermal management solution providers.


Nanofilter membranes

eSpin

High Efficiency Nanofilter Media

- Technology:
 - Nanofiber from Solution
 - Spinning technology
 - Web manufacture

- SBIR Follow-On Funding:
 - FleetGuard Diesel Filter
 - State of Tennessee

Nanocrystalline coatings

Vista Engineering Inc. Raymond G. Thompson DMI-0349769

Nanocrystalline Diamond

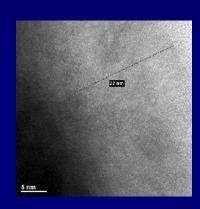
Coated Cutting Tools

Technical Objectives

Batch Process
Intrinsic Film Adhesion
Robust Process Parameters

Goals

Product to Market 2005
Venture Capital 2004 – 2005
Win in Growing Market \$300M in 2010


Commercialization Strategy

High-end
High Productivity
Partner with Tool Manufacturer
Automotive Applications

ALD NanoSolutions, Inc. Dr. Karen J. Buechler DMI-0422220

STTR Phase II: Novel Nanocoated Ferromagnetic Materials

γ-Al₂O₃ growing epitaxially to iron particle surface

Goals:

- •Use Particle-ALD™ to Deposit Nanothick Films on Fine Particles
- •Develop Pilot Scale Production Capabilities for Particle-ALD™
- Develop Link to Consumer Products for Nanocoated Fine particles through use of Strategic Partners

Technical Objectives:

- •Develop Atomic Layer Deposition (ALD) chemistry for placing conformal, pinhole-free, and nanothick alumina films on individual primary particles
- •Produce Kilograms of nanocoated fine iron powders using a scaleable fluidized bed process
- •Characterize the product: film thickness, composition, crystallinity, particle size distribution, surface area, oxidation resistance, magnetic moment

Commercialization Strategy:

- •Work with Strategic Partners to Design materials for the Aerospace, Electronic, and Automotive Industries
- •Using Facilities proven during Phase II, provide materials for Consumer Product Development
- •License or Manufacture coated particles designed through Phase II to Strategic Partners as needs dictate

Nanobiomaterials

Luna Innovations Charlie Pennington

"Nuclear-Magnetic Resonance (NMR) Properties of Carbon Nanomaterials for Medical Applications"

Goals

- Increase production efficiency by 10X
- Enhance water solubility while maintaining low apparent molecular weight
- Develop high field strength MRI contrast agents

Technical Objectives

- Enhance Production Efficiency for Gd₃N@C80 and other Trimetaspheres
- Optimize and Finalize functionalization of Gd3N@C80
- Optimize and functionalize Er₃N@C80, Ho₃N@C80, and Tb₃N@C80

Commercialization Strategy

- Competitive advantage-25X more sensitive than current MRI agents
- Establish wide customer base sales through emerging and established pharmaceutical companies
- Ability to produce "site-directed" contrast agents

Dr. Stuart Farquharson Nanomaterial for Microchip Sensors

Goal

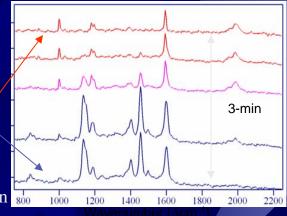
Build a microchip chemical analyzer that simultaneously separates chemical species and provides surface-enhanced Raman activity to allow < 5-min analysis of < mL samples at ppm concentrations.

Technical Objectives

- Develop Separation Chemistry
- Design & Build SERS Microchip
- Build Analyzer (fluid delivery)
- Test Analyzer (figures of merit)
- Product Design with Customers

Commercialization Strategy

- Protect with patents (two submitted 10/02, third in 01/03)
- Develop applications with strategic partners (pharmaceutical, medical, clinical, biotech)


Leverage exclusive use against investment

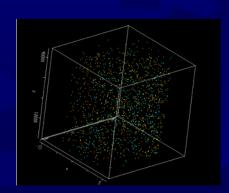
Results To Date

phenyl acetylene

p-aminobenzoic acid

2 chemicals separated and identified in 3-min 800

Applied Spectroscopy, 57, 479 (2003)


Imago Scientific Instruments Three Dimensional Atom Probe Imaging

- Technical:
 - LEAP® (Local Electrode Atom Probe) microscope for 3-D structure
 - Nano-biotechnology devices
 - DNA chips, medical implants

Outside Investment

Venture Capital Funding +

Customer Sales: \$1,000,000

Nanoelectronics

Thin Film Transistors: Silicon Nanowires

High Performance, large area nano-structured macro-electronics substrate technology

TFT Backplane Drivers – Integrated Edge

Electronics

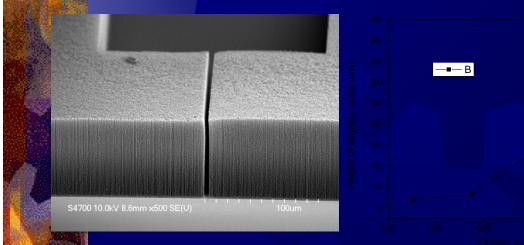
Beam-Steering Antennas

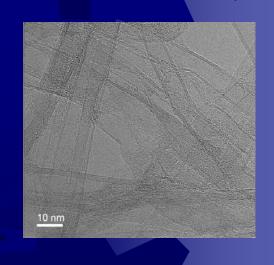
- Eliminates high-temperature steps required for semiconductor deposition
- Dramatically reduces manufacturing cost, time and complexity
- Deposition on virtually any substrate material possible

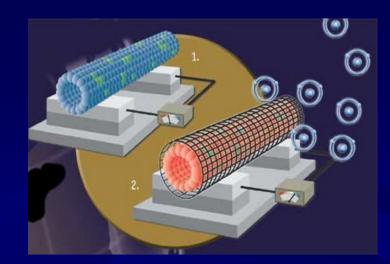
A variety of application areas:

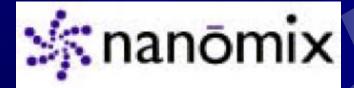
- Portable & large-area flat panel displays
- Low-cost RFID and smart cards
- •Electronically steerable phased-array RF antennas

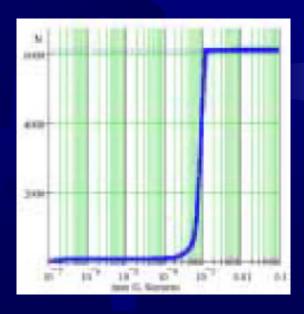
RFID Tags






- Project goal: Development of nanotube-based electronic devices
- Technology: CVD-based site-selective synthesis of carbon nanotubes



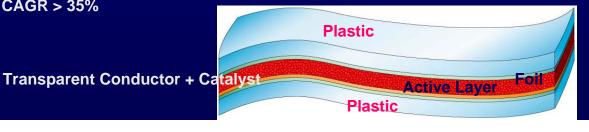

+ One new patent application filed

Photovoltaics: Konarka nanoparticle cosensitizers for increased efficiency

From Light to Power

Polymer photovoltaic products in a variety of form factors for commercial, industrial, military and consumer applications

- Uses photoactive dyes & conducting polymers
- High-speed manufacturing processes
- Low temperature environment
- Uses low cost materials
- Highly scaleable


• Mass customization from a single source

• World solar PV market: CAGR > 35%

• 20+ patents pending

Schematic of Dye Sensitized Titania Cell

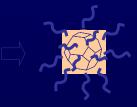
Total thickness 0.01 inch

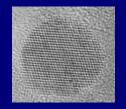
Nanophotonics

InnovaLight Frederic Mikulec

Continuous Flow Reactor & Size-Selection Scheme for Use in High Throughput Manufacture of Si Nanoparticles

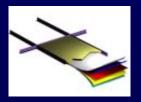
Goals:


- Si nanomanufacturing system
- Process parameters
- 5 grams/hour



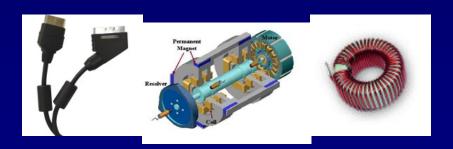
Technical Objectives:

- High quantum yields
- Tunable emission
- Defect-free particles



Commercialization Strategy:

- IP portfolio
- Cell phones, exit lighting (short term)
- Solid-State Lighting



Nanomagnetics

Nano-magnetic materials

Nanocrystalline FeCo for EMI Suppression

Goals

- Scale up the production and the consolidation process
- Tailor materials for EMI suppression up to 1 GHz
- Optimize material properties for enhanced bearing performance in flywheel energy storage and artificial implants
- Low loss magnetic cores and inductors

Technical Objectives

- Production of nano-sized FeCo and their consolidation to near net shapes
- Magnetic Characterization and EMI testing
- Fabrication of magnetic bearings and their testing
- Fabrication of materials for inductors and their testing

Commercialization Strategy

- Strategic Alliances
- Worldwide licensing for a fixed fee
- Spin off a separate business unit

T/J Technologies, Inc.

mology:

Rate, High Capacity Anodes for chargeable Li Batteries Based on tall Oxide Nano Composites

Conductive 1 micron

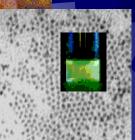
Outside Investment

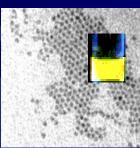
NASA Contract: \$2,200,000

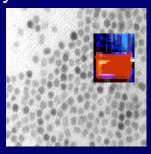
Goals:

- Reduce irreversible capacity to <15%
- >300 mAh/g reversible capacity
 - >10C at 80% rated capacity and 80% DOD
- →Achieve projected material costs of <\$10/kg</p>

Commercialization Strategy:


- System payoff:
 30-50% reduction in large format lithium-ion battery size
- Develop a cost-competitive battery suitable for HEV, UPS, military and aerospace applications
- •Strategic Partnerships for joint development of new materials: materials production and battery manufacturing




Nanomanufacturing

Semiconductor Nanocrystal (Quantum Dot) Manufacturing

A New Scale-Up Technology for Industrial Production of High-Quality Semiconductor Nanocrystals

2.5 nm CdSe 3.5 nm CdSe 5.5 nm CdSe Goals:

NN-Labs will offer customers colloidal semiconductor nanocrystals with the:

- Highest Quality: stable, surface flexibility, narrow size distribution
- Lowest Price: affordable
- Broadest Range: II-IV, III-V, and IV-VI semiconductor nanocrystals

Technical Objectives

- Develop large-scale synthetic protocols for type II-IV, III-V, IV-VI semiconductor nanocrystals
- Stabilize these nanocrystals with dendron ligands
- Establish industrial standards
- Assemble Auto CB SynthesizerTM

Commercialization strategy

- Focus on electronic and biological applications
- Patent and license the synthesis protocol
- Advertise: Commercial ads and conference exhibits
- Secure financial support from VC and strategic partners

Deepika Singh Grant # DMI 0349609

Technical Objectives

- ➤ Low Defectivity Polishing (Ta)
- ► Large scale Synthesis
 - Nanoporous Silica
- Formulate CMP slurries
- Test and Benchmark CMP results
 - Initial Tests Complete

Goals

MARKET OPPORTUNITY

- •New Materials (Cu/Low K, Cu /Ultra Low K)
- Need New Solutions
- Ultra Low K
- Increasing CMP Costs

SINMAT's GOAL

- Low Stress Soft Layer Polishing
- •Nanoporous
 Particles
- Integration

Commercialization Strategy

- Protect Intellectual Property
- Complete and implement staged fund raising strategy
- Execute R&D and marketing alliances with select, major industry partners

Summary

- SBIR/STTR Program is important part of University –Industry interaction for commercializing Nanoscale Science and Engineering
- In FY 07 the NSF SBIR/STTR program made 65 nano-related grants to small companies totaling over \$17 MM.
- *Across the whole Federal government SBIR/STTR programs awarded over \$80 MM in nano-related grants.

NSF SBIR/STTR Home Page

www.nsf.gov/eng/iip/sbir tjrudd@nsf.gov Thank You James Rudd

