

PIONEERS IN COLLABORATIVE RESEARCH®

SRC: A Successful Collaborative Research Model

Ralph K. Cavin, III

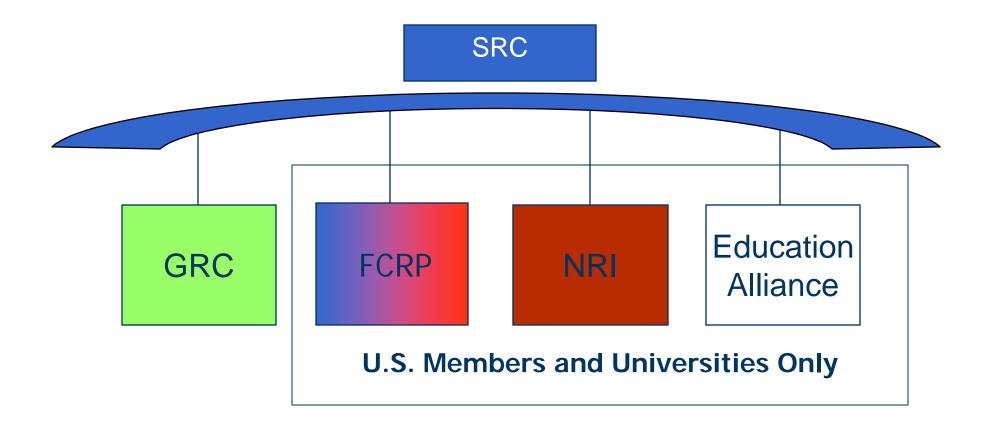
National Science Foundation Arlington Virginia December 3, 2007

SRC's "Founding Fathers"

Erich Bloch, IBM vice president Director of the National Science Foundation, Recipient of the National Medal of Technology

Robert Noyce, "the Mayor of Silicon Valley", co-founder of Intel and co-inventor of the integrated circuit.

SRC was formed in 1982



Jack Kilby, Nobel Prize Laureate for the invention of the integrated circuit

SRC Brands: A Family of Distinct but Related Program Entities

- GRC: Addressing CMOS scaling and scaling independent challenges collectively aimed toward continuing the viability of the current industry.
- FCRP: Addressing technical barriers faced by semiconductor industry to enable execution of ultimate-CMOS while developing linkages to beyond-CMOS.
- NRI: Addressing identification of the next "switch" or "information element" enabling revolutionary new approaches that significantly increase functionality and expand system application space.

SRC Research Programs

- \$976M invested by SRC Members
- \$827M contract funding
- \$243M leveraged funding
- 2,677 contracts
- 6,845 students
- 1,525 faculty members
- 227 universities

Deliverables

- ♦ 38,708 technical documents
 - 295 patents in SRC portfolio
 - 701 patent applications
 - 596 inventor awards
 - 548 software programs
- 2,022 tasks/themes in research catalog

Recipient of the National Technology Medal

- Compelling evidence from physics that CMOS scaling would end within 20 years
- SRC/NSF workshops in 2003, 2004 and 2005 on 'Silicon Nanoelectronics and Beyond'
 - Collaborative Board for Advancing Nanoelectronics formed in 2003
 - Five technical working groups activated in 2003
- Parallel industry workshops

- Five major technical thrusts defined
 - Computational state vectors other than electronic charge
 - Non-equilibrium systems
 - Novel, non-charge data transfer mechanisms
 - Nanoscale phonon engineering for thermal management
 - Directed self-assembly of such structures
- NRI launched in 2005
 - Collaborative funding by industry, NSF, NIST, and the states of New York, Texas, California and Georgia

- NRI Mission: Demonstrate novel computing devices to enable the semiconductor industry to extend Moore's Law beyond the limits of CMOS
- Leverage industry, university, and both state & fed government funds, and use to drive university fabrication infrastructure
 - Initial program 2006-2009, with future expansion planned

WIN Western Institute of Nanoelectronics	INDEX Institute for Nanoelectronics Discovery & Exploration	SWAN SouthWest Academy for Nanoelectronics	NSF NSEC & MRSEC Supplemental Funding
UCLA , UCSB, Berkeley, Stanford	SUNY-Albany , GIT, Harvard, MIT, Purdue, RPI, Yale	UT-Austin , UT-Dallas, TX A&M, Rice, ASU, Notre Dame, U of MD	Funding 12 projects at 10 NSF centers
Theme 1: Spin devices Theme 2: Spin circuits Theme 3: Benchmarks & metrics	Task I: Novel state-variable devices Task II: Fab & Self- assembly Task III: Modeling & Arch Task IV: Theory & Sim Task V: Roadmap	Task 1: Logic devices with new state-variables Task 2: Materials & structs Task 3: Self-assembly & thermal mgmt Task 4: Interconnect & Arch Task 5: Nanoscale characterization	Broad work on various topics – also leverages other work in the centers

Joint program established with NSF to fund NRI-related research at NSF centers

Ы	Institution	Center	Center Name	Title of Supplement	
Lundstrom, Mark	Purdue U	NCN	Network for Computational Nanotechnology	Exploratory Theory, Modeling, and Simulation for the NRI	
Yardley, James T.	Columbia U	NSEC	Columbia Center for Electronic Transport in Molecular nanostructures	Non-equilibrium Quantum Coherent Devices in 1-D materials	
Westervelt, Robert	Harvard U	NSEC	Science of Nanoscale Systems and their Device Applications	Ultrasmall Nanowire and Oxide Switches	
Hawker, Craig	UCSB (Stanford, U Mass)	MRSEC	MRSEC at UCSB	Development of Next Generation Devices using Nanolithographic Techniques	
Hull, Robert	U Virginia (Notre Dame)	MRSEC	Center for Nanoscopic Materials	Directed Assembly of Epitaxial Semiconductor Nanostructures for Novel Logic Switches	
Johnson, Matt	U. Arkansas/ U Oklahoma	MRSEC	Center for Semiconductor Physics in Nanostructures	Nanoferroelectric Random Access Memory	

NSF and NRI selected six new projects at NSF centers for 2007-2009

РІ	Institution	NSF Center Type	Center Name	Title of Supplement
Tsymbal, Evgeny / Sellmyer, David; Belashchenko, Kirill; Sabirianov, Renat	U.Neb-Lincoln (U.Neb-Omaha)	MRSEC	Q-SPINS: Quantum and Spin Phenomena in Nanomagnetic Structures (www.mrsec.unl.edu)	"Multiferroic interfaces: new paradigms for functional switching"
Hull, Robert / Wolf, Stuart; Floro, Jerrold; Awschalom, David; Snider, Greg	U. Virginia (UCSB / Notre Dame)	MRSEC	Center for Nanoscopic Materials Design (www.mrsec.virginia.edu)	"Coherent Spin Dynamics in Single Ion doped Semiconductors: Towards a Coherent or Quantum Spin Switch"
Lundstrom, Mark / Alam, Muhamad; Datta, Supriyo; Klimeck, Gerhard; Roy, Kaushik	Purdue	NCN	The Network for Computational Nanotechnology (www.ncn.purdue.edu)	"Exploratory Theory, Modeling, and Simulation for the Nanoelectronics Research Initiative"
Ahn, Charles (Tully, John)	Yale	MRSEC	Center for Research on Interface Structures and Phenomena (www.crisp.yale.edu)	"Design and fabrication of magnetic-based devices with complex oxide materials"
MacDonald, Allan / DasSarma, Sankar (Williams, Ellen)	UMD (UT-Austin)	MRSEC	Materials Research Science and Engineering Center (http://mrsec.umd.edu)	"Pseudospintronics"
Kan, Edwin (Buhrman, Robert)	Cornell	NSEC	Center for Nanoscale Systems in Information Technologies (http://www.cns.cornell.edu/)	"Controlled Orbital Hybridization in the Carbon Nanotube Quantum Modulated Transistor (CNT- QMT)"

Environmental requirements for successful collaborative research

- Growth-oriented, technology-driven industry
- Sufficient industry revenue base to support research
- Common/congruent technical interests among industry participants
- "Can-do" attitude of industry participants to transform precompetitive research into competitive advantage
- Benign government policies with respect to pre-competitive research collaboration
- Intersection of government program directions/interests with industry

- Guaranteed influence by each participating company and government sponsors on research directions
- Equity with respect to participation costs
- Equal and rapid access to research results and intellectual property by all industry participants
- Hands-on industry involvement in the conduct of the research program
- Strong and relevant university researcher base