

Conventional Micro/Nanofabrication Technology in Semiconductor Industry

Creating small structures using "biological systems"

Bionanofabrication – a process that takes advantage of structural specificity and/or catalytic activity of the biological systems to create various types of micro/nanostructures

Bacterial S-layer Proteins

Bacterial Polyester

Surface Layer (S-Layer) Proteins

(a) Comparison of Gram-negative (left) and Gram-positive (right) cell wall structures. (S), S-layer; (CM), cell membrane; (P), peptidoglycan. (b) Types of S-layer morphologies

Morphology of the *Sulfolobus acidocaldarius* S-layer (SAS)

Nanoparticle Patterning On S-Layers

We investigated the deposition of metal /semiconductor nanoclusters into the pore/vertex regions of HPI and SAS by using different types of capping ligands

- Metal or semiconductor nanoparticles with charged surface-capping molecules are deposited at specific regions on the Slayer through electrostatic and/or other binding interactions.
- Permit better control over material quality and size uniformity (monodispersity)
- A wide range of different types of nanomaterials can potentially be arrayed

100 nm

FFT 0.18 nm⁻¹

Si Nanopillars Using Biotemplated Au Nanoparticles as Etch Masks for SiCl₄ ICP

1.5 mTorr, 20 °C, 60 sec etch

Silicon nanopillars after SiCl₄ ICP process. (a) Low-mag image. (b) Higher-mag image. SNPs are approximately 8-13 nm wide at the tip, 15-20 nm wide at half-height, 20-30 nm wide at the base and ~100-120 nm tall. SNPs are spaced \geq 25 nm apart.

Ge nanowires on s-layers

Nice tricks

Bacteria...nanowired

samplo.an2.6.tif 18:57 09/18/07

500 nm HV-80kV Direct Mag: 14000x X: Y: AMT Camora System

Intermission

Poly(3-hydroxyalkanoates) or PHAs

- Aliphatic polyesters
- Intracellular carbon & energy storage compounds
- Non-crystalline inclusion bodies
- Biodegradable
 - By enzymatic reaction
 - By chemical hydrolysis
- Biocompatible
- Different side chain substitutents give different material properties

Optical micrograph of 10 μ m x 10 μ m Au arrays

Bionanofabrication of PHB polymer on Au patterned surfaces

Keep that in mind

Various PHA Monomeric Constituents Found in Nature

Screen for "active" chimeric PHA synthase

Is this useful?

No cell attachment observed

Biofabricated PHB-BSA surface may be used as a novel biocompatible surface for culturing stem cells.

Non-differentiated ES cells have round shape morphology

Cell Adhesion and Proliferation of Mouse Embryonic Fibroblasts (MEFs)

Fibronectin Distribution and Actin Filament in MEF Cells

... The actin filaments were structured in fibrils showing co-localization with fibronectin...

Extracellular Matrix (i.e. fibronectin)

What influence the attachment and growth of cells on the fabricated PHB surface ?

Measurement of <u>Vitronectin</u> and <u>Fibronectin</u> Adsorption from the Cell Culture Media Using ELISA

Fabrication

CNF

KX Aperture 1000 and EDE (on (* 107 V) State # + House Deel TRD * 2000 EP/T * 510007 Poet Sca + 341 Tene State 314 * 352 Tene

Carbon Nanotubes: in situ PHB growth

Carbon Nanotubes-PHB Osteoblast scaffold

Proliferation

Morphology

Bone formation on carbon nanotubes-PHB

6.5% Agarton with MNPs

After spptying magnet.

What about the body?

Too Small to See

- •1 & 2
- •Wichita
- •UC Santa Barbara

Acknowledgments

Batt Laboratory, Cornell

Batt Group Members

NBTC, Cornell

Magnus Bergkvist

MENT Research Group, ORNL

Michael L. Simpson (PI) Dale Hensley

CINT, Los Alamos

Tom Picraux Sukgeun Choi

Oxford Instruments, UK

Colin Welch Andrew L. Goodyear

Others

Esther R. Angert, Cornell Jun-Lin Guan, Cornell Tom Sato, Cornell Carl Frank, Cornell Eric R. Weeks, Emory David G. Grier, Chicago Daniel Mittleman, Rice

Financial Support

