

Definition on www.nano.gov/omb_nifty50.htm (2000)

- Working at the atomic, molecular and supramolecular levels, in the length scale of approximately 1 – 100 nm range, in order to understand, create and use materials, devices and systems with fundamentally new properties and functions because of their small structure
- NNI definition encourages new contributions that were not possible before.
 - <u>novel phenomena, properties and functions at nanoscale</u>, which are nonscalable outside of the nm domain
 - <u>the ability to measure / control / manipulate matter at the</u> <u>nanoscale</u> in order to change those properties and functions
 - integration along length scales, and fields of application

MC Roco, 12/13/04

<i>Fiscal year</i> (all in million \$)	<i>2000</i> Actual	2001 Enact/Actual	<i>2002</i> Enact/Actual	2003 Enact/Actual	2004 Req./ Enact	2005 Req
National Science Foundatior	ו 97	150 /150	199 /204	221 /221	249 /254	305
Department of Defense	70	110 /125	180 /224	243 /322	222 /315	276
Department of Energy	58	93 /88	91 .1 /89	133 /134	197 /203	211
National Institutes of Health	32	39 /39.6	5 40.8 /59	65 /78	70 /80	89
NASA	5	20 /22	35 /35	33 /36	31 /37	35
NIST	8	10 /33.4	37.6 /77	66 /64	62 /63	53
EPA	-	/5.8	5 /6	5 /5	5 /5	5
Homeland Security (TSA)	-		2 /2	2 /1	2 /1	1
Department of Agriculture	-	/1.5	1.5 /0	1 /1	10 /1	5
Department of Justice	-	/1.4	1.4 /1	1.4 /1	1.4 /1	1
TOTAL	270	422 / <u>465</u>	600 / <u>697</u>	770 / <u>862</u>	849 / <u>961</u>	982
		+72%	+50%	+24%		
 Industry, state and lo 21 NSET department 	ocal org s / age	ganizations: a ncies, includi	bout 1.5 time ng: OSTP, N	es NNI budge STC, OMB, D	et in 2003 OC, DOS, D	OOT,

NS in Na	F - a pione and at th noscale Sci	er among Federal agencies le international level ence and Engineering (<u>NSE</u>)
<u>FY 2003:</u> ~	1/4 of Federa	1 and 1/12 of World Investment
 Seven them novel phenomer Processes, Mul implications and 	les : Biotechno na, Device and tiscale modeling I Improving hur	blogy, Nanostructures 'by design' and system architecture, Environmental g, Nanoscale manufacturing; Societal nan performance
- Establishin 20 large centers,	g the infra 2 user facilities	S tructure : over 2,000 active projects; (NNIN, NCN), multidisciplinary teams
– Training ar	nd educatio	n over 7,000 students and teachers
Fiscal Year	NSF	400
2000	\$97M	300
2001	\$150M	200 SE (\$M)
2002	\$199M	150 100 Congr. Bill
2003	\$221M	50
2004 Decreat 2005	\$254M	2000 2001 2002 2003 2004 2005
Request 2005	\$305M	R MC Roco, 12/13/04

Nanoscale Science and Engineering support at NSF in FY 2004

The budget appropriated by Congress: \$254M

• <u>Program solicitations</u> (about \$91M, about 1/3) Nanoscale Science and Engineering - \$79M, NSF 03-043 Nanoscale Science and Engineering Education - \$12M, NSF 03-044

• <u>Support in the core program</u> (about 2/3) with focus on single investigator & other core

Various research and education programs in all directorates Interdisciplinary fellowships; STC, MRSEC and ERC centers Instrumentation (REG, MRI); Collaboration industry (GOALI, PFI) Network for Computational Nanotechnology (\$2.8M/yr) National Nanotechnology Infrastructure Network (\$14M/yr) Nanoscale Informal Science and Education (NSF 03-511)

• **SBIR/STTR** (additional ~ \$10M)

MC. Roco, 12/13/04

NNI implementation plan published in July 2000 Major changes in the first 4 years of NNI (Part 1)

- <u>Research</u>: NNI supports about 2,500 active awards (of which NSF funds about 2000) in over 300 academic organizations and 200 private organizations in all 50 states; <u>Developments faster than expected</u>: Reducing the time of reaching commercial prototypes by at least of factor of two for several key applications. Setting new goals.
- <u>Education</u>: 8,000 students and teachers trained in 2004; All science and engineering colleges have introduced courses related to NSE. Earlier nanotechnology education.
- <u>Significant infrastructure</u>: in over 60 universities with user capabilities; Five networks (NCN,NNIN, OKN, DOE, NASA) have been established. About 40,000 workers

 NNI implementation plan published in July 2000
 Major changes in the first 4 years of NNI (Part 2)
 Industry: about the same level of investment as NNI in medium and long-term research; Investment by large companies; From "if?" to "how?" and "who will lead?" All 'Fortune 500' in manufacturing, over 875 companies
 Innovation and venture funding: US has over 5,300 patents in 2003 with USPTO (61% world)
 Estimation on revenues from nanotechnology: Reaching \$1 trillion in 2015 (or earlier) worldwide, accelerated development; growth >25% per year (catalysts, pharmaceutics, IT, ..)
 States and regional alliances: since 2002
 >0 states committed funding, > 22 regional alliances

Center (details on www.nsf.gov/home/crssprgm/nano/nni01_03_env.htm)	Institution Rice University (\$11.8M)	
Nanoscience in Biological and Environmental Engineering (est. 50% in environment), NSEC		
NIRT: Investigating Nano-carbon Particles in the Atmosphere: Formation and Transformation	University of Utah (\$1.7M)	
NIRT: Nanoscale Processes in the Environment - Atmospheric Nanoparticles	Harvard University (\$1.6M)	
NIRT: Nanoscale Sensing Device for Measuring the Supply of Iron to Phytoplankton in Marine Systems	University of Maine (\$0.9M)	
NIRT: Combustion-generated Nanoparticles: The role of Transition Metals in Nanoparticles and Pollutant Formation	Louisiana St. University, (\$1.2 million)	
NIRT: The Role of Nanoscale and Molecular Structures in Dictating Environmental Reactivity	University of Alaska, Fairbanks (\$1.5 million)	
NIRT: Response of Aquatic and Terrestrial Microoganisms to Carbon-based Manufactured Nanoparticles	Purdue University, \$1.6 million (2004-2008)	

