

rice engineering Bioengineering

Systems, Synthetic, and Physical Biology

Functional interactions of nanomaterials with cellular clearance and stress response pathways

Laura Segatori Bioengineering, Chemical & Biomolecular Engineering, BioSciences

Rice University Houston, TX

Cell and Protein Engineering Research http://segatori.blogs.rice.ed segatori@rice.edu

Designer cells that sense and respond

Biomanufacturing

Diagnostics

Cell therapies

Understanding nano-bio interfaces

When nano-sized materials are internalized into cells, they are likely to be perceived as foreign or toxic and may stimulate the activation of cellular clearance and stress response pathways

Significance: environmental health and safety of nanomaterials

Health & safety

Consumer products Industrial production of nanoparticles

Imaging, diagnostics, therapeutics

Enhancement of inefficient autophagic clearance vs

Fundamental studies

Autophagic response to nanosized particles

me

β-cyclodextrin activates TFEB and enhances clearance

CD

J Biol Chem. 2014 Apr 4;289(14)

PLoS One. 2015 Mar 19;10(3)

Design rules of nanomaterials with desired autophagy inducing properties

ACS Nano. 2014 Oct 28;8(10) cta Biomater. 2018 Oct 1;79:354-363 /irology. 2017 Oct;510:1-8 Nanobiotechnology. 2015 Nov 23;13:87

Effect of nanoparticle surface charge on

Cationic PS impair lysosomes

AOlow

50

0

PS-NH₂

10²

AOlow

10³

PI-A

10⁴

10⁵

50

0

UT

Nanobiotechnology. 2015 Nov 23;13:87

Autophagic response to cellular exposure to titanium dioxide (TiO₂) nanoparticles

oxidative

stress

illness/

disease

15 nm

50 nm

100 nm

- Generally regarded as safe by FDA
- In consumer/industrial products inflemm.
- TiO₂ NP exposure affects cell function Acta Biomaterialia 79 (2018) 354–363

TiO₂ nanoparticles causes lysosomal membrane permeabilization

100 nm

15 nm

50 nm

Acta Biomaterialia 79 (2018) 354-363

Cytoplasm

Nanoparticles as autophagy activators

Mechanisms of nanomaterial-induced autophagy activation

Curr Opin Biotechnol. 2015 Dec;36:129-3

Adeno-associated virus (AAV)

- Naturally occurring, genetically encoded nanomaterial
- ~25 nm diameter
- Used as a gene therapy vector
- Gene delivery requires evasion of cellular clearance mechanisms

AAV activates TFEB and enhances

Lysosome Autophagosome

Nucleus

Cytoplasm

Autophagolysosome

Virology 2017 510, 1–8

AAV-induced autophagy causes a reduction in AAV transduction efficiency

*p<0.01

**p<0.001

***p<0.001

transduction index

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Cntrl

siRNA

TFEB

siRNA

Virology 2017 510, 1-8

Unfolded Protein Response (UPR) and AAV

Unfolded Protein Response (UPR) and nanomaterials

Unfolded Protein Response (UPR) and nanomaterials

Monitoring gene activity from the native chromosomal context

Nat Chem Biol 2020

Post-translational control of the reporter output enhances the dynamic resolution of mammalian signaling systems

Methods Enzymol 2019;622:1-27

A gene signal amplifier for monitoring the UPR

May:16(5)

Programming designer cells

Diagnostics

Methods Mol Biol in press

RICE ENGINEERING Bioengineering

Systems, Synthetic, and **Physical Biology**

Dr. Wenting Zhao Dr. Yimeng Zeng **Dr. Lauren Popp Dr. Carlos Origel Dr. Brianna Kuypers** Dr. Bhagyashree BachhavTianyi Xie

Daniela Barrios

Yafet Arefeayne Jacopo De Rossi Lynna Baryakova Carlos Llanos

Joshua Buchi-Ahiabuike Hannah Lim Lavanya Saxena

CBET 1159640 CBET 1805317 CBET 1930149 CBET 1254318 CBET 1112783 CBET 2036109 CBET 1336053 MCB 1615562 MCB 2128370

Cell and Protein Engineering Research

http://segatori.blogs.rice.ed segatori@rice.edu