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* Surfing sequence space

* Letting computers take the lead



A new lineage for reverse transcriptases
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KOD is sensitive to RNA Templates

Template Strand
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QCCCTCGCAGCCGTCCAACCAACTCA Primer

GGGAGCGTCGGCAGGTTGGTTGAGTGTTCT{&TAGTATATTACGGCAAAAGC DNA template

XXX

Essentially no initial Complex template-polymerase
activity interface = no rational library
design



Compartmentalized self-replication (CSR; Phil Holliger)
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Mutation Frequency

Transforming KOD Polymerase into an Efficient

2. RT-CSR (emulsion PCR)
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From RNA
directly to
dsDNA, via

PCR
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Wei Yang, NIH

What has evolution actually done?

Comparison of RTX (left) and KOD (right) structures co-crystallized
with RNA:DNA (RTX) or DNA (KOD) templates. Relevant residues

and regions leading to accommodation of the RNA template are
listed.



Molecular Checkpoints in KOD Polymerase for Alternate

Uracil
Amino acid Mutation Amino Acid armi Ercaone
Position Frequency Change
384 Y->H 96.00%
(1] 97 93.3% R->A 20.80%
R->F 18.00%
Other 54.50%
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Bred for RNA ... or just away from DNA?
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Supplementary Figure 13. Primer extension reactions aon DNA and 2" O-methyl DMNA substrates using
KOD, KOD exo-, RTX, and RTX exo-. KOD polymerases were nof capable of primer axiension indicating

2" Q-methyl DMNA is not a subsirate. RTX enzymes could polymerize across 2' C-methyl subsftrates, but
stimulated proofreading preventing fully extended products.

We now present the possibility of a future with a RTX
lineage for many XNAs.



Evolving the 2 Ome RTX Reverse Transcriptase

« »
Challenge” Ome RNA
| 2. RT-CSR (emulsion PCR)
For. Primer |Rev. Primer (#
v o @ Total
Sequence é é é plasmid annealing ( ) o S)
Wﬁ primer 1 5 5 10
A\ 4 2 5 5 10
------------- pOIYmerase 3 10 5 15
i EE 4 10 10 20
{0 0 0!
S ——— template 5 10 10 20
B ™ mi 6 20 10 30
RT (N #) residues 7 20 10 30
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N N
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- . 17 30 52 82
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Challenge Primer
(CSR)

Incremental Restructuring of the

KOD (DNA)

Primer
RTX Mutations

Ome-RTX Mutations
" H

RTX (RNA / DNA) Ome-RTX (Ome / RNA / DNA)




Test for RT-PCR decoding of Ome Templates

RT-PCR Test for Oligonucleotide Replication
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* Ome V6 can effectively RT-PCR fully modified templates.

* Ome V6 can decode Omethyl RNA messages



* Surfing sequence space

* Letting computers take the lead



While directed evolution is a powerful tool, it can also be a slow and cumbersome one. The
‘hunt-and-peck’ nature of mutation is fundamentally different than how a human engineer
would approach the problem of making a new molecule. Enter machine learning.

“In certain kinds of positions, it sees
so deeply that it plays like God.” -
Gary Kasparov

The rise of AlphaZero



Advances in other sciences are possible in part because of the
Institute for Foundations in Machine Learning (IFML)
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Supervised Deep Learning Framework

Relevant features are Each image is assigned a
Input extracted probability for belonging to a

images redtQRR EXtASeAGR specifici@ssification

f
Bird 0.95
cat 0.01
Dog 0.01
Fish 0.03
) [jff?iiji]l

N N NN TN

Three Input  Convolution Pooling Convolution Pooling Flatten Classificatio

NG \ NN

Back-Propagation

Errors are back propagated through
the network to improve feature
extraction and classification

- essentially one big non-linear math equation with millions/billions of parameters that are optimized by
minimizing the error between the correct answer and the predicted answer




Data driven feature extraction makes
deep learning very powerful

Convolutional filters learn salient features through training

block

Shallow
Layers
Apply
Convolutional
layer
Train on lots of data
Featu re Maps block5_conv1 Deep



A self-supervised learning task enables Y
evolution to teach us what proteins ‘should’ look like

Masked Microenvironment

Center microenvironment Delete remaining protein atoms Delete centered amino acid
around an amino acid and use as the label

Evolution provides the learning signal during model training

19



A 3D CNN can predict amino acid identity

Trains a neural network to learn what residues fits given a chemical environment

Austin Cole * 32,760 structures used for training — 1600 for testing
’ * 600,000 unique environments for training

Raghav Shroff

Aperiam « 20 amino acid environments sampled per iteration (~20,000 per epoch)
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(2017)



Predictive Accuracy (%)

Improving predictive accuracy lowers the sequence
space

Use the Torng and Altman model as a starting point Physical Channels

(5 channels) Add hydrogen channel
(7 channels) Add partial charges and solvent accessibility channels I
(Improved Clustering) Cluster input sequences to 50% similarity

(Standardize Input Data) Use refined and rebuilt protein structures from pdbRedo
(Random Sampling) Randomly sample residues in input proteins rather than
spatially sample

7. (Reweighting) Bias residues towards natural frequencies
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How we leverage ML models to guide \'/

protein engineering
N __

/ﬁT Residue = Val 216

P(Ser | Context) ~ 0.20
P(val | Context) ~ 0.20
\f(Ala | Context) ~ 0.14 )

WT Residue = Tyr 14

P(Phe | Context) ~ 0.77
P(Tyr | Context) ~ 0.14
\ P(His | Context) ~ 0.05/

ML Model Thinks Many
Residues May Fit

An Aromatic Probably
Belongs Here

4 )

WT Residue = Gln 39

P(Arg | Context) ~ 0.68
P(Lys | Context) ~ 0.30
\\P(His | Context) ~ 0.01 )

GIn Probably Does not Mutations at residues like GIn 39 could
Belong Here improve a diverse set of protein functions.

MutCompute can flag positions in the protein string that are likely
contributing to instability

22
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BFP: Sites predicted by the NN yield stabilizing
mutants

Blue fluorescent proteins have a long history optimization for brightness,
solubility and folding.

Can we use our neural network to improve secBFP2?

Selected residues with the lowest wild-type probability, built NNS libraries,
and assayed approximately 200 variants. Sequenced the highest variants.

Unfavorab
le 8/9 sites yield stabilizing mutants (>10% WT)

13 18 28 114 124 127 151 173 198
randomly choosing sites? normalized to WT

2

18
16
14

Variants, sorted by
Random 4/10 sites yield stabilizing mutants. flurorescence
Positions 202 and 208 show only modest improvement

27 47 92 116 133 144 158 202 208 228



3D CNN stabilizing mutants can be combined for

greater effect

* While the effects of stabilizing mutations are typically modest, they are usually additive
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MutCompute guided the thermal stabilization of a polymerase for
single temperature COVID19 diagnostic applications

LAMP-OSD Assays MutCompute Top 10 WT Mispredictions
2 & 2 A ° Predicted
1] 65°C e ) 73 C Mutcompute Wild Type Predicted
£15 - - = 8 1.5 - Mutations Amino Acid Amino Acid
o ©
Q
ﬁ 1 4 § 1 - Mutl
o —
305 - Sos - Mut2
u’ E -------- MUt3
Uﬂ c“ s A 12 - 0 L L : ' ’ Mut4 R 562V 0.004 0.58
= ~ ™M < ] & = P P g R Mut5 $371D 0.01 0.872
Time (min) Time (min) Muté N 528 E _ e
Bst-LF = = Br512 wt Mut235 e si0f o o
Left shift: protein more thermostable/active Mutg 1304 v 0.018 0.981
Right shift: protein is unfolding/inactive Mut9 Y303 H 0.019 0.522
LAMP-OSD:

- Isothermal nucleotide amplification technique

- rivals speed and sensitivity of PCR

- Does not require thermal cycling and associated instrumentation
= More convenient for clinical and field use

ML-designed polymerase (Mut235) enabled single temperature »
COVID19 diagnostic in under ~20 minutes (and as little as ~10 minutes) Andre Maranhao, PhD Inyup Paik, PhD  Sanchita Bhadra, PhD

Paik et al. ACS Biochemistry 2021 MutCompute predictions available at https://mutcompute.com/view/3tan 2



https://mutcompute.com/view/3tan

Combined Variants are Inhibitor
Resistant
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Ellington Lab’s Distribution Efforts (06.01.2020 ~ Current)
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Plastic pollution is a global problem

“Every minute, the equivalent of one garbage truck of plastic is dumped into our ocean.”

- United Nations Environment Programme

g?_‘-__s;ﬁn Pl

&

20 years 30 years 200 years

' % *‘jﬁﬁ"years.

Plastic was invented because ~12 million tonnes/year Now we eat microplastics, yay
it's durability entered the ocean
o e Hal Alper,
It took nature ~60M years to learn how to efficiently breakdown ﬁ ChemE

wood and end the Carboniferous period. With machine learning,

can we accelerate this process for plastic into a few years?
28

https://earth.org/plastic-pollution-statistics/



Turning to Nature:
Enzymatic PET depolymerization

o

- PETase: a PET hydrolase enzyme first discovered in Ideonella sakaiensis in 2016
- Cutinase: Cutin hydrolase enzyme also capable of depolymerization of PET
- 48% sequence similarity between the two scaffolds
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MutCompute designed variant outperforms the literature
on a PET depolymerization

40 —o— wr
|—®—  Themmo
Dura
30 — LCC

—— ICCM
FAST-PETase

20

Danny Diaz,
Ellington Lab

10 — Hongyuan Lu, PhD

PET monomers released (mM)

_I__To-ﬁ##q._i'_.ﬁ._?hl._' MutCompute predictions available at
0 https://mutcompute.com/view/6ij6
0 6 12 18 24

mutcompute.com/view/7shé

*FAST-PETase: S121E /R224Q/N233K (All 3 predicted by MutCompute)
*MutCompute designed variants displayed significantly improved protein expression yield (data in supplementary slide)

ThermoPETase: Son et al. ACS Catalysis (2019)

DuraPETase: Cui et al. ACS Catalysis (2021)

Cutinase Engineering (LCC and ICCM): Tournier et al. Nature (2020)
H. Lu, D. J. Diaz, N. J. Czarnecki, C. Zhu, W. Kim, R. Shroff, D. J. Acosta, B. Alexander, H. Cole, Y. J. Zhang, N. Lynd, _A. D. Ellington, H.S. Alper 30
Machine learning-aided engineering of hydrolases for PET depolymerization. (2022) Nature, in press.



http://orcid.org/0000-0001-6246-5338
https://mutcompute.com/view/6ij6
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https://mutcompute.com/view/7sh6

With MutCompute, we engineered FAST-PETase that can \'/

achieve 100% degradation of retail PET in days

B Time for complete degradation

» Initial mass of the plastic discs

Polar park

Pink is the anomalous chemistry
MutCompute identified
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MutCompute predictions available
at https://mutcompute.com/view/6ij6
H. Lu, D. J. Diaz, N. J. Czarnecki, C. Zhu, W. Kim, R. Shroff, D. J. Acosta, B. Alexander, H. Cole, Y. J. Zhang, N. Lynd, _A. D. Ellington, _H. S. Alper 31

Deep Learning redesign of PETase for practical PET degrading applications. (2021) Nature, in review.


https://mutcompute.com/view/6ij6
http://orcid.org/0000-0001-6246-5338
http://orcid.org/0000-0002-8246-8605

PET degradation time-lapse

Sourced from Walmart
48 hour time lapse at 50C (122F)




Synergize MutComputeX with AlphaFold and Docking for
Substrate Specificity Engineering

10 mutations in sequence space computationally modeled
Workflow: Blue is experimental Green is AlphaFold

- Alphafold a protein variant
- Sample ligand conformer space

dock a library of ligand conformers with Al

Design ligand specific libraries with MutComputeX

Directed Evolution/Site Directed Mutagenesis Experiments

Repeat

Apply to Transcription Factors and Enzymes

Simon d’'Oelsnitz, PhD

33
Experimental ligand  Al-docked ligand



Active Site Enzyme Engineering Without a Structure I\'/

Enzyme: Methy] Transferase Trying to make 4-OMe Norbelladine o
L] /
Previous Attempts: Hﬂwe _
= Error Prone PCR failed to provide any improved variants /@/\/N OH B HO: , N—
Al Pipeline: OH HO Ny
- AlphaFold protein H __Enzyme _ Major Product HO

OH  SAM cofactor

- Al dock SAM cofactor O/\/
HO

= Al dock substrate
- Generate mutational designs with MutComputeX Substrate /@/\/
HO

OH Galantamine:
\/@[ FDA Approved drug to
OMe

treat Alzheimer

ZT

- Screen Variants

- Stack gain of function variants Minor Product

And not make: 3-OMe Norbelladine
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James Howard
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Simon d’Oelsnitz, PhD



Active Site Enzyme Engineering Without a Structure Il

Provided 22 mutagenesis designs, 7 of improved enzyme activity

Substrate Product
1ed4 1eb5
. 1.0 Standards 1.0 4
Conclusion:
- Improved activity of Methyl Transferase by 3X with active site mutations without an 05 1 k 05 -
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Conclusions

* Directed evolution is still excellent at evaluating entire structures / functions,
especially where many mutations may be required to attain a given phenotype

* Even so, directed evolution will be largely displaced by machine learning coupled
to synthetic biology (DBTL) approaches

* Increasingly, there will be no requirement for solved protein structures in order to
carry out engineering campaigns

* Increasingly, there will be no requirement for deep chemical or biological
understanding in order to carry out engineering campaigns



Acknowledgements

Y

Computational: Experimentalists: Funding: ”'El\/VeIc\h
- James Loy, PhD Ebru Cayir, PhD - DTRA ounmaTon
- Raghav Shroff, PhD Simon d’Oelsnitz, PhD - Exxon

- Chengyue Gong - Matt Minus, PhD - NASA
- James Howard - NIH Nt Hoalth
- Alper lab, Hong Lu )
DireCted eVO|Uﬁon: I F M L Institute for Foundations of

MACHINE LEARNING

RTX: Jared Ellefson, Raghav Shroff

T7 RNAP: Adam Meyer AM D n

Adam

Klivans
37




