
Is a blind watchmaker the same as a blind neural net?
Adventures in protein engineering

Andrew Ellington
Center for Systems and Synthetic Biology

University of Texas at Austin

NSF Nanoscience
December 7, 2023



• Surfing sequence space

• Letting computers take the lead



A new lineage for reverse transcriptases

Jared 
Ellefson



KOD is sensitive to RNA Templates

Essentially no initial 
activity

Complex template-polymerase 
interface = no rational library 
design



Compartmentalized self-replication (CSR; Phil Holliger)



Increased Stringency by Increasing # of 
RNA bases in Primers

Next-Gen Sequencing of Libraries 
Recapitulates Evolutionary History

Transforming KOD Polymerase into an Efficient Reverse 
Transcriptase



From RNA 
directly to
dsDNA, via
PCR



Comparison of RTX (left) and KOD (right) structures co-crystallized 
with RNA:DNA (RTX) or DNA (KOD) templates.  Relevant residues 
and regions leading to accommodation of the RNA template are 
listed.

What has evolution actually done?

Wei Yang, NIH



Molecular Checkpoints in KOD Polymerase for Alternate 
Template Recognition (RNA)

Uracil 
Recognition

Active Site 
Specificity

Duplex Binding



Bred for RNA … or just away from DNA?

We now present the possibility of a future with a RTX 
lineage for many XNAs.



Round # For. Primer 
(# Mods.)

Rev. Primer (# 
Mods.)

Total

1 5 5 10

2 5 5 10

3 10 5 15

4 10 10 20

5 10 10 20

6 20 10 30

7 20 10 30

8 20 20 40

9 20 20 40

10 20 52 72

11 20 52 72

12 20 52 72

13 20 52 72

14 20 52 72

15 20 52 72

16 30 52 82

17 30 52 82

18 30 52 82

“Challenge” Ome RNA

Evolving the 2 Ome RTX Reverse Transcriptase



Incremental Restructuring of Template RecognitionIncremental Restructuring of the 
Template Specificity

(18 Rounds) (36 Rounds)
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RT-PCR Test for Oligonucleotide Replication

Test for RT-PCR decoding of Ome Templates 

• Ome V6 can effectively RT-PCR fully modified templates.

• Ome V6 can decode Omethyl RNA messages 



• Surfing sequence space

• Letting computers take the lead



While directed evolution is a powerful tool, it can also be a slow and cumbersome one.  The 
‘hunt-and-peck’ nature of mutation is fundamentally different than how a human engineer 
would approach the problem of making a new molecule.  Enter machine learning.

“In certain kinds of positions, it sees 
so deeply that it plays like God.” – 
Gary Kasparov

The rise of AlphaZero



Advances in other sciences are possible in part because of the 
Institute for Foundations in Machine Learning (IFML)

Adam Klivans Alex Dimakis



Supervised Deep Learning Framework
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Input Convolution Pooling Convolution Pooling

Feature Extraction

Bird 0.95
Cat  0.01
Dog  0.01
Fish 0.03

Flatten Classificatio
n

Classification

Back-Propagation

Three Input 
Channels

Input 
images

Relevant features are 
extracted 

from the image

Each image is assigned a 
probability for belonging to a 
specific class 

Errors are back propagated through 
the network to improve feature 
extraction and classification

- essentially one big non-linear math equation with millions/billions of parameters that are optimized by 
minimizing the error between the correct answer and the predicted answer



Data driven feature extraction makes 
deep learning very powerful 

Train on lots of data

Apply 
Convolutional 
layer

Feature Maps

Convolutional filters learn salient features through training 

Shallow
Layers

Deep
Layers



A self-supervised learning task enables 
evolution to teach us what proteins ‘should’ look like

Center microenvironment 
around an amino acid 

Delete remaining protein atoms Delete centered amino acid 
and use as the label

Masked Microenvironment

Evolution provides the learning signal during model training
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A 3D CNN can predict amino acid identity

Adapted from Torng and Altman BMC Bioinf. 
(2017)

• 32,760 structures used for training – 1600 for testing
• 600,000 unique environments for training
• 20 amino acid environments sampled per iteration (~20,000 per epoch)

Trains a neural network to learn what residues fits given a chemical environment

Can predict wild type amino 
acid with ~41% accuracy

Can we improve prediction? 
 
And what about the  ‘mis-
predictions?’

Raghav ShroffAustin Cole, 
Aperiam



Improving predictive accuracy lowers the sequence 
space

1. Use the Torng and Altman model as a starting point
2. (5 channels) Add hydrogen channel
3. (7 channels) Add partial charges and solvent accessibility channels
4. (Improved Clustering) Cluster input sequences to 50% similarity
5. (Standardize Input Data) Use refined and rebuilt protein structures from pdbRedo
6. (Random Sampling) Randomly sample residues in input proteins rather than 

spatially sample
7. (Reweighting) Bias residues towards natural frequencies

Physical Channels

Partial Charge

Solvent Accessibility



How we leverage ML models to guide 
protein engineering

MutCompute can flag positions in the protein string that are likely 
contributing to instability
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An Aromatic Probably 
Belongs Here

WT Residue = Tyr 14

P(Phe | Context) ~ 0.77
P(Tyr | Context) ~ 0.14
P(His | Context) ~ 0.05

WT Residue = Val 216

P(Ser | Context) ~ 0.20
P(Val | Context) ~ 0.20
P(Ala | Context) ~ 0.14

ML Model Thinks Many 
Residues May Fit 

WT Residue = Gln 39

P(Arg | Context) ~ 0.68
P(Lys | Context) ~ 0.30
P(His | Context) ~ 0.01

Gln Probably Does not 
Belong Here

Mutations at residues like Gln 39 could 
improve a diverse set of protein functions. 



BFP: Sites predicted by the NN yield stabilizing 
mutants

Random

Unfavorab
le

Selected residues with the lowest wild-type probability, built NNS libraries, 
and assayed approximately 200 variants. Sequenced the highest variants.

Blue fluorescent proteins have a long history optimization for brightness, 
solubility and folding.

Can we use our neural network to improve secBFP2?

mTagBFP PDB: 3M24

Fluorescence 
normalized to WT

Variants, sorted by 
flurorescence 

8/9 sites yield stabilizing mutants (>10% WT) 

Does this outperform 
randomly choosing sites?

4/10 sites yield stabilizing mutants.
Positions 202 and 208 show only modest improvement 



3D CNN stabilizing mutants can be combined for 
greater effect

Bluebonnet:
Combining 8 mutations

• While the effects of stabilizing mutations are typically modest, they are usually additive

Wild-type



MutCompute guided the thermal stabilization of a polymerase for 
single temperature COVID19 diagnostic applications

Left shift: protein more thermostable/active
Right shift: protein is unfolding/inactive
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LAMP-OSD: 
- Isothermal nucleotide amplification technique
- rivals speed and sensitivity of PCR
- Does not require thermal cycling and associated instrumentation
- More convenient for clinical and field use

ML-designed polymerase (Mut235) enabled single temperature 
COVID19 diagnostic in under ~20 minutes (and as little as ~10 minutes)

MutCompute predictions available at https://mutcompute.com/view/3tanPaik et al. ACS Biochemistry 2021

Inyup Paik, PhD Sanchita Bhadra, PhD

LAMP-OSD Assays

Andre Maranhao, PhD

MutCompute Top 10 WT Mispredictions

https://mutcompute.com/view/3tan


Combined Variants are Inhibitor 
Resistant

Urine Sample contains
Urea ~300mM

Urea 50mM blocks 
PCR



Ellington Lab’s Distribution Efforts (06.01.2020 ~ Current)



Plastic was invented because 
it‘s durability

~12 million tonnes/year 
entered the ocean

Now we eat microplastics, yay

Plastic pollution is a global problem
“Every minute, the equivalent of one garbage truck of plastic is dumped into our ocean.”
- United Nations Environment Programme 

2828

It took nature ~60M years to learn how to efficiently breakdown 
wood and end the Carboniferous period.  With machine learning, 
can we accelerate this process for plastic into a few years? 

https://earth.org/plastic-pollution-statistics/

Hal Alper,
ChemE



Turning to Nature:
Enzymatic PET depolymerization

- PETase: a PET hydrolase enzyme first discovered in Ideonella sakaiensis in 2016

- Cutinase: Cutin hydrolase enzyme also capable of depolymerization of PET

- 48% sequence similarity between the two scaffolds

EG

TPA

PET

PETase or Cutinase

+

29

plastic Raw materials



*FAST-PETase: S121E /R224Q/N233K (All 3 predicted by MutCompute) 
*MutCompute designed variants displayed significantly improved protein expression yield (data in supplementary slide)

MutCompute designed variant outperforms the literature 
on a PET depolymerization

30H. Lu, D. J. Diaz, N. J. Czarnecki, C. Zhu, W. Kim, R. Shroff, D. J. Acosta, B. Alexander, H. Cole, Y. J. Zhang, N. Lynd,   A. D. Ellington,  H. S. Alper 
Machine learning-aided engineering of hydrolases for PET depolymerization . (2022) Nature, in press.

Hongyuan Lu, PhD

ThermoPETase: Son et al. ACS Catalysis (2019)
DuraPETase: Cui et al. ACS Catalysis (2021)
Cutinase Engineering (LCC and ICCM): Tournier et al. Nature (2020)

MutCompute predictions available at 
https://mutcompute.com/view/6ij6

Visualize FAST-PETase at https://
mutcompute.com/view/7sh6

Danny Diaz,
Ellington Lab

http://orcid.org/0000-0001-6246-5338
https://mutcompute.com/view/6ij6
https://mutcompute.com/view/7sh6
https://mutcompute.com/view/7sh6
https://mutcompute.com/view/7sh6


With MutCompute, we engineered FAST-PETase that can 
achieve 100% degradation of retail PET in days 
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Pink is the anomalous chemistry 
MutCompute identified

MutCompute predictions available 
at https://mutcompute.com/view/6ij6

H. Lu, D. J. Diaz, N. J. Czarnecki, C. Zhu, W. Kim, R. Shroff, D. J. Acosta, B. Alexander, H. Cole, Y. J. Zhang, N. Lynd,   A. D. Ellington,   H. S. Alper 
Deep Learning redesign of PETase for practical PET degrading applications. (2021) Nature, in review.

https://mutcompute.com/view/6ij6
http://orcid.org/0000-0001-6246-5338
http://orcid.org/0000-0002-8246-8605


PET degradation time-lapse

Sourced from Walmart
48 hour time lapse at 50C (122F)
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10 mutations in sequence space computationally modeled 
Blue is experimental Green is AlphaFold

TM-Score: 92

Experimental ligand AI-docked ligand

Simon d’Oelsnitz, PhD

Workflow:

- Alphafold a protein variant

- Sample ligand conformer space 

- dock a library of ligand conformers with AI

- Design ligand specific libraries with MutComputeX

- Directed Evolution/Site Directed Mutagenesis Experiments

- Repeat

Apply to Transcription Factors and Enzymes

Synergize MutComputeX with AlphaFold and Docking for 
Substrate Specificity Engineering

33



Active Site Enzyme Engineering Without a Structure I
Enzyme: Methyl Transferase
Previous Attempts: 
- Error Prone PCR failed to provide any improved variants

AI Pipeline: 
- AlphaFold protein
- AI dock SAM cofactor
- AI dock substrate
- Generate mutational designs with MutComputeX
- Screen Variants
- Stack gain of function variants

Matt Minus, PhD

Simon d’Oelsnitz, PhD

Enzyme
SAM cofactor

Major Product

Minor Product

James Howard

Substrate
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Galantamine: 
FDA Approved drug to 

treat Alzheimer

Trying to make 4-OMe Norbelladine

And not make:  3-OMe Norbelladine



Provided 22 mutagenesis designs, 7 of improved enzyme activity

Conclusion: 
- Improved activity of Methyl Transferase by 3X with active site mutations without an 

experimentally solved structure
- Currently writing manuscript

Active Site Enzyme Engineering Without a Structure II

MutComputeX designs + stacked designs

WT

Design 1

Design 2

Stacked Designs

Design 1

Design 2

Stacked Designs

Standards

35
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Conclusions

• Directed evolution is still excellent at evaluating entire structures / functions, 
especially where many mutations may be required to attain a given phenotype

• Even so, directed evolution will be largely displaced by machine learning coupled 
to synthetic biology (DBTL) approaches

• Increasingly, there will be no requirement for solved protein structures in order to 
carry out engineering campaigns

• Increasingly, there will be no requirement for deep chemical or biological 
understanding in order to carry out engineering campaigns
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