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Research Need:
• Implantable medical devices are needed to reduce 

patient burden for chronic diseases
• Fouling of devices is a major barrier to implementation
• PEG prevents fouling but also can bioaccumulate and 

illicit an immune response

Solution:
● Polyproline has special properties allowing high packing 

and is a promising material for antifouling
● Peptide-based structures are easily tunable, multi-

functional biocompatible, and controllable
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•  Antifouling studies of human mesenchymal stem cells 
(hMSCs) has tissue engineering implications
•  PPII-coated gold surface prevents hMSC adherence

Bare Gold PPII with P

Peptide Design and Goal
(GPPXPPG)2C X = Guest Residue [2]

* are statistically different via t-test

Check out 
our website! 

The Renner Laboratory

We engineer interfaces with polypeptides!

Area 1: Biomaterials 
and biointerfaces

• Stimuli-responsive 
surfaces

• Biosensing
• Antifouling 

coatings

Area 2: Resource 
recovery 

• Nitrogen and 
phosphorous
• Rare earth 

elements 

X can be chosen for varying PPII propensity, 
hydrophobicity, chemistry and bulkiness 

Adsorption Behavior

• Quartz crystal microbalance with dissipation (QCM-D) 
monitoring allows analysis of adsorption and fouling

• The fractional occupancy (Θ) of PPII peptide adsorption 
with time can be described via the Langmuir adsorption 
and rearrangement model [3]

Controlling Cell Adherence

Results

Goal: Understand PPII peptide assembly and antifouling 
properties to generate a predictable framework 

Parameter Average ± standard error
ka (L mol-1 s-1) 2600 ± 800

kd (s-1) 0.0036 ± 0.0010
kt (s-1) 0.00064 ± 0.00014

Adjusted R2 0.99 ± 0.0�0

• Sequences with P as the guest residue have the highest 
antifouling properties, despite having statistically similar 
loading as all other sequences tested

• Peptide sequences that include P as the guest residue 
have higher PPII helix content  

Results (cont.)
Controlling Fouling via Peptide Loading

•  Kinetically controlled loading significantly impacts the 
amount of fouling in PPII peptides with P as the guest 
residue – other factors such as % rearrangment, PPII 
propensity and proline content are also being explored
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*A,B,C represent statistically similar groupings via 
Tukey’s post hoc test after significant ANOVA test

Engineering PPII Peptide Sequences
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*A,B,C represent statistically similar groupings within one bar chart via Tukey’s post hoc test after significant ANOVA 
test, loading and fouling were found to be significantly linearly correlated via linear regression
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