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Goal

Develop sustainable, high-performance polymers from lignocellulosic biomass and link feedstock and deconstruction
pathways to polymer properties
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* Cellulose & hemicellulose: Polysaccharides used in paper 40-60%
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v’ Synthesized high-performance, lignin-derived
polymers for applications such as pressure-sensitive
adhesives

products and biofuels

* Lignin: Complex, aromatic polymer; generally treated as
waste
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* 100 million tons of lignin separated annually as a byproduct
of the pulp & paper industry = >98% burned for heat
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Future work and collaboration opportunities
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Lignin-derived bioplastics’”
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* ~6.3 billion metric tons of plastic waste generated to-date
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* Only ~9% has been recycled and ~12% was incinerated
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Functionalization
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Substituted phenols * Biobased plastics account for just 3% of annual production
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Lignin deconstruction

Process intensification for significantly reduced operating pressure (atmospheric pressure vs. ~1,500 psi) =
reduced energy costs, lower environmental footprint, and increased scalability

Polymer synthesis

Leverage structure-property relationships to design high-performance materials using bio-derived mixtures
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Product
manufacturing

* Sustainability requires balancing performance
and environmental impacts across the polymer
life cycle:
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* After Use

Landfill/ Reuse
Incineration Reprocess —r
Repair Applications

Life-Cycle
Management

* Beginning: Monomers sourced from
renewable resources

* Middle: Designed for durability and/or
repairability

* End: Recyclable or degradable after use

* Collaboration through our NSF Growing Convergence Research team to connect catalytic deconstruction
approaches, enzymatic functionalization strategies, non-invasive characterization techniques, and structure/
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Integrated lignocellulosic biorefineries property relationships in the production of more circular, high-performance polymers
* Life-cycle assessment (LCA): computational method to determine [ e )

Milling & Chipping

environmental impacts of petroleum-based and bioderived chemicals
and materials

I Steam & Electricity Generation Excess Utilities
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