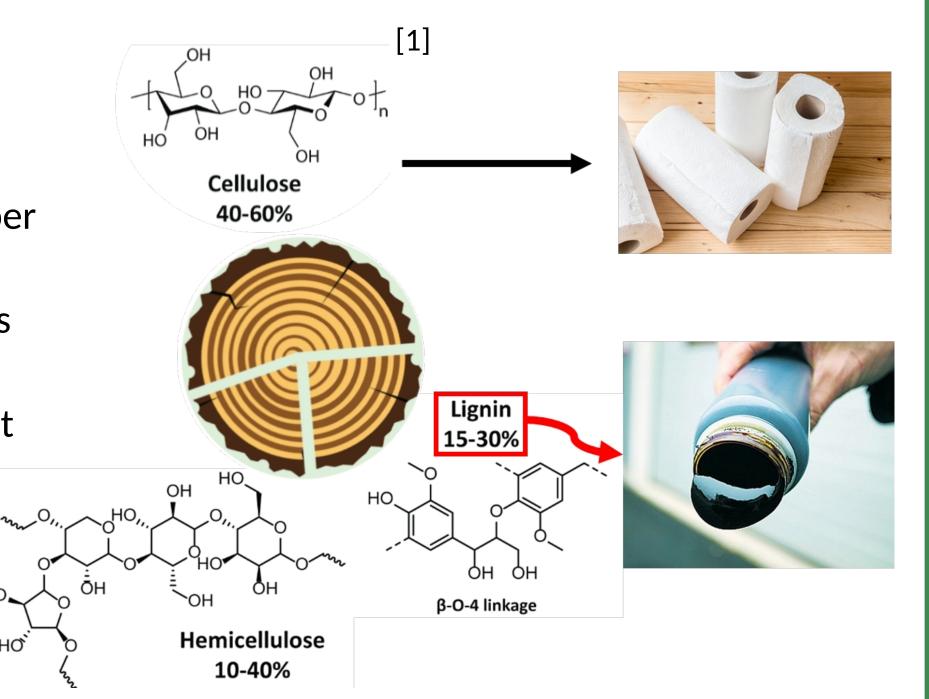


Lignin valorization: Biomass deconstruction to synthesize high-performance polymers (NSF GCR CMMI 1934887)

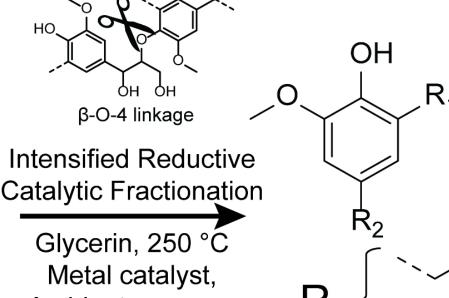
Robert M. O'Dea,^a Alison J. Shapiro,^a and Thomas H. Epps, III a,b

^aDepartment of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 ^bDepartment of Materials Science and Engineering, University of Delaware, Newark, DE 19716


Contact: thepps@udel.edu

Goa

Develop sustainable, high-performance polymers from lignocellulosic biomass and link feedstock and deconstruction pathways to polymer properties


Biomass as a monomer source¹⁻⁴

- Biomass consists of three primary components:
 - Cellulose & hemicellulose: Polysaccharides used in paper products and biofuels
 - Lignin: Complex, aromatic polymer; generally treated as waste
- 100 million tons of lignin separated annually as a byproduct of the pulp & paper industry → >98% burned for heat
- Significant economic opportunity with environmental benefits

Lignin-derived bioplastics5-9

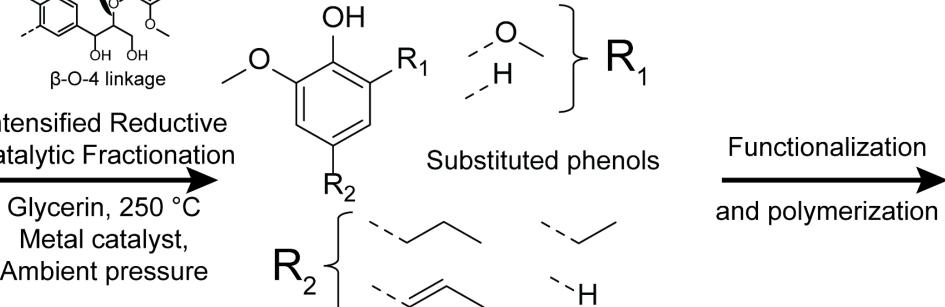


Photo credit: Evan Krape/University of Delaware

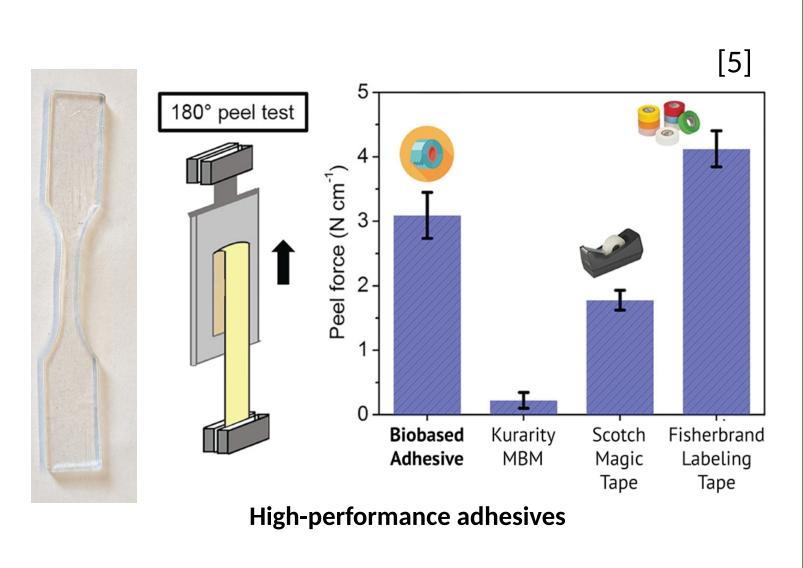
Lignin deconstruction

or technical lignin

Process intensification for significantly reduced operating pressure (atmospheric pressure vs. \sim 1,500 psi) \rightarrow reduced energy costs, lower environmental footprint, and increased scalability

Polymer synthesis

Leverage structure-property relationships to design high-performance materials using bio-derived mixtures


Integrated lignocellulosic biorefineries¹⁰

- Life-cycle assessment (LCA): computational method to determine environmental impacts of petroleum-based and bioderived chemicals and materials
- Yellow poplar forest residue biorefinery modeled for LCA
 - Abundant, low-cost lignocellulosic biomass feedstock
 - Reductive catalytic fractionation and molten salt hydrate processes
 - Primary products: *p*-xylene, furfural, and phenolics
- Global warming potential reduction of 849 1,110 kg CO₂-eq/ton vs. petroleum-derived feedstocks, dependent on the mixture of bark, leaves, and twigs/branchlets

orest Management & Harvest **Yellow Poplar Hilling & Chipping** Branchlets | Leaves Pelleting & Drying Phenolics Wastewater Treatme Water Ethylene *p*-Xylene Heptane **Furfural Unreacted Solid Waste** H₂SO₄ Flue Gas LiBr **Excess Utilities**

-Important achievements

- Developed a safer, more scalable, and more economical deconstruction method
- Synthesized high-performance, lignin-derived polymers for applications such as pressure-sensitive adhesives
- Modeled integrated biorefinery with significantly lowered environmental impacts in comparison to analogous petrochemical production

Future work and collaboration opportunities

Life-cycle management^{1,2}

- ~6.3 billion metric tons of plastic waste generated to-date
 - Only ~9% has been recycled and ~12% was incinerated
 - Biobased plastics account for just 3% of annual production
- Sustainability requires balancing performance and environmental impacts across the polymer life cycle:
- **Beginning:** Monomers sourced from renewable resources
- Middle: Designed for durability and/or repairability
- End: Recyclable or degradable after use
- Life-Cycle manufacturing
- Collaboration through our NSF Growing Convergence Research team to connect catalytic deconstruction approaches, enzymatic functionalization strategies, non-invasive characterization techniques, and structure/ property relationships in the production of more circular, high-performance polymers

rReferences

- O'Dea, R. et al. ACS Macro Letters **2020**, 9(4), 476-493.
- Mahajan, J. et al. ACS Sustain. Chem. Eng. 2020, 8(40), 15072-15096.
- Gandini, A. Green Chemistry 2011, 13(5), 1061-1083. Bajwa, D. et al. Industrial Crops and Products 2019, 139, 111526.
- Wang, S. et al. ACS Central Science 2018, 4(6), 701-708
- Holmberg, A. L. et al. Macromolecules **2016**, 49(4), 1286-1295 Emerson, J. et al. ACS Sustain. Chem. Eng. 2018, 6(5), 6856-6866
- O'Dea, R. et al. Science Advances 2021, 8(3), eabj7523
- Ebikade, E., et al., U.S. Patent App. 17/634,271, 2019. 10. Luo, Y. et al., Env. Eng. Sci., 2022, 39(10), 821-833.

Acknowledgments

- NSF GCR CMMI 1934887
- University of Delaware
- **Epps Research Group** sites.udel.edu/eppsgroup

