

NNCI: The Montana Nanotechnology Facility (MONT) (ECCS-2025391)

David Dickensheets, Stephanie McCalla, Recep Avci, David Mogk, Phil Stewart and *Sean Fox Montana State University, Bozeman MT; *Carleton College, Northfield, Minnesota

Vanotechnology

Montana Nanotechnology Facility

MONT and its Core Facilities

The Montana Nanotechnology Facility (http://www.nano.montana.edu)

at MSU is the Northern Rockies hub of the NNCI community, providing researchers from academia, government and the private sector leading-edge fabrication characterization tools and expertise within disciplines of nanoscale science, engineering, and technology. It is located in a region with vibrant and emerging high tech companies that conduct research on optics, biomedical applications, energy systems and earth and environmental materials.

MONT comprises four core facilities at MSU:

Montana Microfabrication Facility (MMF: http://www.mmf.montana.edu/)

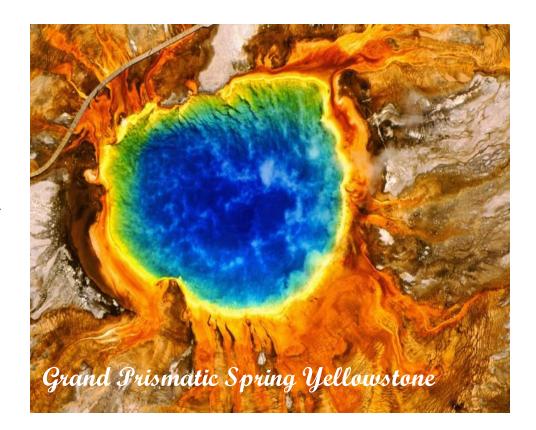
provides class 1000/10000 cleanrooms for lithography, thin films growth, deposition and etch, metrology, packaging and test.

Imaging and Chemical Analysis Laboratory (ICAL: www.physics.montana.edu/ical)

offers state of the art microscopy and spectroscopy equipment, Instrumentation include FEM, SEM, XPS, TOF-SIMS, Hybrid Auger Nanoprobe, AFM, XRD, Optical Microscopes.

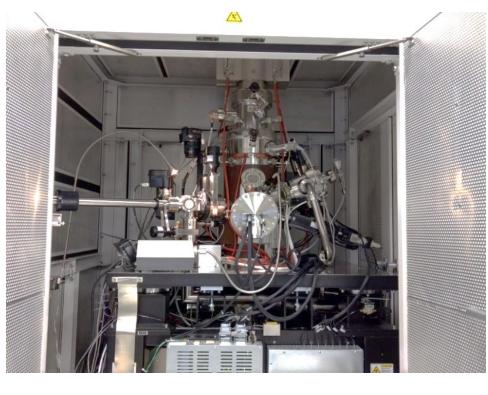
Center for Biofilm Engineering (CBE: http://www.biofilm.montana.edu/)

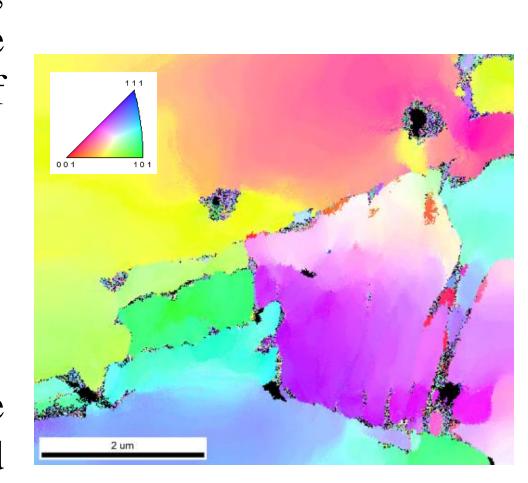
advances the basic knowledge, technology, and education to understand, control and exploit biofilm processes. CBE facilities include an Optical/Confocal Microscopy Lab, Microscope Resource Room, Digital Imaging Lab, and experimental chambers to observe microbial growth under a range experimental conditions.

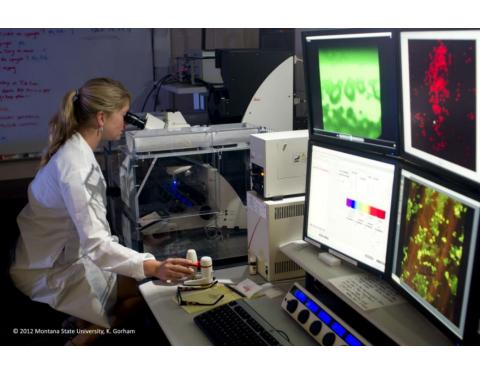

Proteomics, Metabolomics, and Mass Spectrometry Facility

(http://www.montana.edu/massspec/)

offers a full range of services from single samples to complete proteomics metabolomics Instrumentation projects. includes GCMS, LCMS, IMS, MALDI-TOF, ESI-QTOF, and ESI-IonTrap.


State-of-the art capabilities at Mass Spectrometry facility




Class 1,000 cleanroom facility

Hybrid Auger nanoprobe

EBSD orientation map of carbon steel

Microscopy at CBE

www.nano.montana.edu

Education and Outreach Activities

MONT has a comprehensive education and outreach effort with the goals of:

- Increasing awareness about the impacts and potential of nanoscience to the interested public
- Providing mentoring and internship opportunities for students
- Reaching out to companies invested in nanoscience research, to facilitate technology transfer as a regional economic driver
- Facilitating professional development and collaborative research
- Providing on-line resources to teachers of nanotechnology

Specific E&O activities include:

- •Co-authored *Science* review article 'Natural, incidental, and engineered nanomaterials and their impacts on the Earth system."
- •Short courses and training for new users
- •Short courses for K-12 science teachers
- Annual workshops for representatives of regional and national industries
- •Webinars on topics of interest to support distance learning
- Convening Nanoscience in Earth and Environmental Sciences at the 2017, 2018 & 2019 international Goldschmidt conferences

Partnership with Carleton College **Science Education Resource Center**

•Web portal to support instruction on nanotechnology, digital library technologies providing a broad array of learning resources on nanotechnology Science Education Carleton Resource Center College

USERS BY AFFLIATION 2022

USERS BY DISCIPLINE 2022

User Activities and Collaborative Research

4 Year College

MEMS/Mech Eng 7%

Materials

Medicine

Other University

Academic collaborations:

- •MONT supports students, faculty members, and researchers from various academic institutions
- •Students from more than 30 states have used MONT
- •Summer REU program
- •MONT Scholars program for underrepresented undergrads

Industrial collaborations:

•More than 70 industrial collaborators utilize the MONT facilities, including more than 40 small companies in Montana

Broad Range of Disciplines:

- •Fundamental sciences and materials
- •Environmental sciences
- •Biological sciences and health technologies
- Optical technologies

Focus Areas

Bio-inspired and bio-derived nanomaterials

- Energy solutions
- Environmental technologies
- Health/medical biofilms
- Biofilm control strategies
- Industrial processes
- Standardized methods
- Water systems

Bio-mediated nanoscale processes


- Biocorrosion and biodegradation
- Biomineralization
- Bacterial patterning and sorting

Functional nanostructured materials

- Nanostructured optical devices and metamaterials
- Nonlinear optical materials

High temperature materials

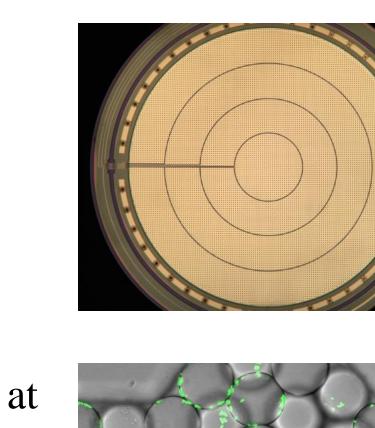
- High temperature corrosion in fuel cells, turbines. engines, boilers, and batteries
- High temperature corrosion in polycrystalline silicon manufacturing

Geological materials

- Evolution of Precambrian crust in southwestern Montana
- Characterization of the morphology, composition, structure, and surface chemistry of minerals to support resource development and environmental remediation

MEMS, MOEMS

- Polymer MOEMS and Micro-Optical **Systems**
- Microsensors

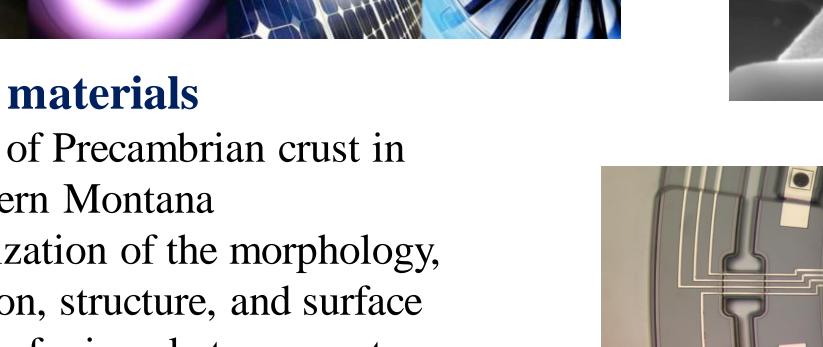

Microfluidics applications

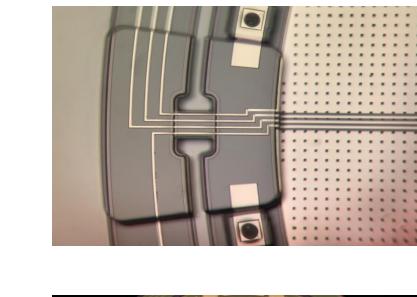
- Healthcare and personalized medicine
- · High-throughput screening and assaying at the single cell level
- Cell discovery

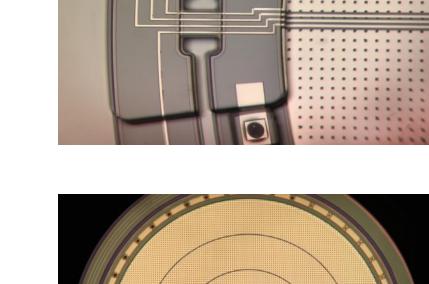
Academic

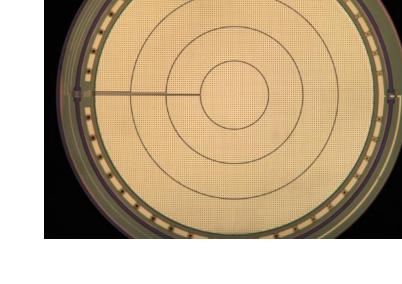
25%

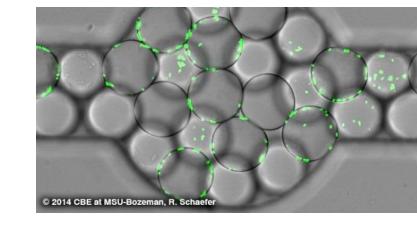
Engineering new biomaterials










We invite the nanotechnology community to visit our MONT facility and establish scientific collaborations with us, and take advantage of the natural treasures found in the rugged beauty of the Northern Rockies and several nearby National Parks.

