Understanding Brain Neurochemistry: Imaging Neuromodulators with High Spatiotemporal Resolution

Markita P. Landry
Assistant Professor
Department of Chemical and Biomolecular Engineering
University of California, Berkeley

landry@berkeley.edu landrylab.com @Landry_Lab
Brain Imaging: Challenge of Space and Time Scales

Sub-Cellular

Multi-Cellular

Functional

nm
μm
mm
cm

Neuronal Synapse
Cell diameter
Neuron length
Brain Functional Regions

<ms
ms
s
day/week
month +

Action Potential
Neurotransmission
Sensory processing
Cell Growth
Tissue regen/Disease

The Brain Structure-Function Relationship

Electrical Activity

Structure & Connectivity

Chemical Activity

~6% probability of dopamine release

“Missing dimension” in neurobiology

Modulatory Neurotransmitters

Norepinephrine

Dopamine

Serotonin

Del Bonis et al., Nano Research (2018)
Types of Neurochemical Communication

Fast Synaptic Transmission:
- Neurotransmitter binds ligand-gated ion channels - allows positively or negatively charged ions to flow into the cell
- Ion flux rapidly changes membrane potential (ms timescale)

Neuromodulation:
- Neuromodulators escape synaptic cleft
- GPCRs are main target of neuromodulators (no current passed)
- GPCRs engage intracellular second messenger pathways to modulate function of downstream substrates (s-min)

Beyene et al., ACS Biochemistry (2018)
Overview of our (Incomplete) Roadmap to the Brain

Stimulus

Behavior

Reward prediction
Motivation
Learning...

Aberrations lead to disease

Behavior

Stimulus

Neural activity & structure

Stimulus

Neurotransmission

Compensatory mechanisms?

Blockers
Antipsychotics
Stimulants/supplements
Parkinson’s, Huntington’s
Re-uptake blockers
Antidepressants

Dopamine

Responsible for

Dopamine

Responsible for

Behavior

Reward prediction
Motivation
Learning...

Dopamine

Responsible for
Why is it so difficult to image neurochemistry?

Chemistry

Brain can tell these molecules apart

DA \[\text{HO-}C_7H_4-b-C_7H_5-CH-\text{NH}_2\]
Tyr \[\text{HO-}C_7H_4-b-C_7H_5-CH-\text{NH}_2\]
Epi \[\text{HO-}C_7H_4-b-C_7H_5-CH(OH)-\text{NH}_2\]
5-HT \[\text{HO-}C_7H_4-b-C_7H_5-CH-\text{NH}_2\]

... we cannot

Physics

Neuromodulation happens deep inside the awake & living brain

Visible microscopy can only image surface-features

Tools to Study Neuromodulation

Microdialysis

Fast scan cyclic-voltammetry

CNiFERs

No spatial information
Low temporal information

False-fluorescent neurotransmitters
Tools to Study Neuromodulation

Microdialysis

Fast scan cyclic-voltammetry

CNiFERs

False-fluorescent neurotransmitters

No spatial information
High temporal information
Tools to Study Neuromodulation

Microdialysis

Fast scan cyclic-voltammetry

CNiFERs

False-fluorescent neurotransmitters

Target molecule

HEK293

Low spatial information
Low temporal information
Tools to Study Neuromodulation

Microdialysis

Fast scan cyclic-voltammetry

CNiFERs

False-fluorescent neurotransmitters

High spatial information
Moderate temporal information
Determining Nanosensor Parameters for Dopamine Imaging

Modeling dopamine release in the striatum

Governing Equation

\[
\frac{\partial c(r,t)}{\partial t} = D\nabla^2 c(r,t) + Q - U
\]

Quantal Release:

probabilistic release into spherical terminal

\[
Q = \sum_{f=1}^{F} \left(\frac{R_o / N_A}{\alpha \cdot [2\pi \cdot (dr)^2]^{3/2}} \cdot \psi(p) \cdot \delta(t - t_f) \right) \cdot \delta(r)
\]

Uptake:

Michaelis-Menten kinetics

\[
U = \frac{r_{\text{max}} c(r,t)}{c(r,t) + k_m}
\]

Beyene et al. ACS Chemical Neuroscience 2017
What Nanosensor Kinetics are Optimal for Dopamine Imaging?

Depends where (in the brain) you are

Low K_d aren’t always best!

Beyene et al. ACS Chemical Neuroscience 2017
Human DA receptors are covalently conjugated to a cpGFP
Dopamine binding induces a conformational change \(\rightarrow \) increases fluorescence of cpGFP

Genetically tractable \(\rightarrow \) *In vivo* dopamine imaging

New probes for neuromodulators: Synthetic Nanosensors

Signal Transducer

Amphiphilic Polymer

~200 nm

1 nm

Analyte Produces Selective Change in I or λ

Intensity

Wavelength (nm)

Intensity

Wavelength (nm)

Imaging Stimulated Dopamine Release with Synthetic Nanosensors

With Linda Wilbrecht
UC Berkeley Psychology

Mouse brain → Coronal slices → Sensor incubation

img:

- **Single pulse**
- **nIRCat dose-response to varying stimulation amplitudes**

*N=5 animals
Error is std.dev*

Drugs Exhibit Variable Effects on Dopamine Modulation

- **Quinpirole** - psychoactive drug
 - D2 and D3 receptor agonist
 - Decreases synaptic dopamine

0.25 μM – drug does not saturate dopamine receptors

Dopamine re-uptake kinetics?

Image of a scatter plot showing the relationship between hotspot (count) and ΔF/F ratio. The image also includes a table with the count of hotspots for different ΔF/F ratios.
Acknowledgements

Support Staff
Sigrid Allen (Berkeley)
Jeff Bui (Berkeley)
Karen Nelson (Berkeley)

Collaborators
Prof. Lela Vukovic (UT-EP)
Prof. Linda Wilbrecht (UC Berkeley)
Prof. Marla Feller (UC Berkeley)
Dr. Ron Zuckermann (LBNL)
Prof. Patrick Vora (George Mason U)
Prof. Robert Fromeke (NYU)
Prof. Brian Staskawicz (UC Berkeley)

Landry Lab
Dr. Travis Del Bonis O'Donnel
Dr. Eduardo Grandio
Dr. Sanghwa Jeong
Dr. Ian McFarlane
Dr. David Piekarski
Dr. Huan Zhang
Abraham Beyene
Gabriel Dorlhiac
Linda Chio
Frankie Cunningham
Gozde Demirer
Gabriel Dorlhiac
Natalie Goh
Alison Lui
Nick Ouassil
Rebecca Pinals
Jeff Wang
Darwin Yang
Sarah Yang

Undergraduates
Abhishek Aditham
Tanya Chaudhary
Aishy Murali
Ami Thakrar
Cindy Zhou

Stanley Fahn
Junior Faculty Award

SIMONS FOUNDATION

NIH MIRA R35
CEBRA R21
NINDS BRAIN initiative R21

Universities

CASI landry@berkeley.edu
landrylab.com

BASF
We create chemistry

ALFRED P. SLOAN FOUNDATION

Berkeley Neuroscience
Helen Wills Neuroscience Institute

Beckman
Arnold and Mabel

INNOVATIVE GENOMICS INSTITUTE

BRAIN & BEHAVIOR
RESEARCH FOUNDATION
Awarding NARSAD Grants

MIRA R35
CEBRA R21
NINDS BRAIN initiative R21

Young Investigator Award

Young Faculty Award

Bakar Fellows

Support Staff
Sigrid Allen (Berkeley)
Jeff Bui (Berkeley)
Karen Nelson (Berkeley)

Collaborators
Prof. Lela Vukovic (UT-EP)
Prof. Linda Wilbrecht (UC Berkeley)
Prof. Marla Feller (UC Berkeley)
Dr. Ron Zuckermann (LBNL)
Prof. Patrick Vora (George Mason U)
Prof. Robert Fromeke (NYU)
Prof. Brian Staskawicz (UC Berkeley)

Landry Lab
Dr. Travis Del Bonis O'Donnel
Dr. Eduardo Grandio
Dr. Sanghwa Jeong
Dr. Ian McFarlane
Dr. David Piekarski
Dr. Huan Zhang
Abraham Beyene
Gabriel Dorlhiac
Linda Chio
Frankie Cunningham
Gozde Demirer
Gabriel Dorlhiac
Natalie Goh
Alison Lui
Nick Ouassil
Rebecca Pinals
Jeff Wang
Darwin Yang
Sarah Yang

Undergraduates
Abhishek Aditham
Tanya Chaudhary
Aishy Murali
Ami Thakrar
Cindy Zhou

Stanley Fahn
Junior Faculty Award

SIMONS FOUNDATION

NIH MIRA R35
CEBRA R21
NINDS BRAIN initiative R21

Universities

CASI landry@berkeley.edu
landrylab.com

BASF
We create chemistry

ALFRED P. SLOAN FOUNDATION

Berkeley Neuroscience
Helen Wills Neuroscience Institute

Beckman
Arnold and Mabel

INNOVATIVE GENOMICS INSTITUTE

BRAIN & BEHAVIOR
RESEARCH FOUNDATION
Awarding NARSAD Grants

MIRA R35
CEBRA R21
NINDS BRAIN initiative R21

Young Investigator Award

Young Faculty Award

Bakar Fellows

Support Staff
Sigrid Allen (Berkeley)
Jeff Bui (Berkeley)
Karen Nelson (Berkeley)

Collaborators
Prof. Lela Vukovic (UT-EP)
Prof. Linda Wilbrecht (UC Berkeley)
Prof. Marla Feller (UC Berkeley)
Dr. Ron Zuckermann (LBNL)
Prof. Patrick Vora (George Mason U)
Prof. Robert Fromeke (NYU)
Prof. Brian Staskawicz (UC Berkeley)

Landry Lab
Dr. Travis Del Bonis O'Donnel
Dr. Eduardo Grandio
Dr. Sanghwa Jeong
Dr. Ian McFarlane
Dr. David Piekarski
Dr. Huan Zhang
Abraham Beyene
Gabriel Dorlhiac
Linda Chio
Frankie Cunningham
Gozde Demirer
Gabriel Dorlhiac
Natalie Goh
Alison Lui
Nick Ouassil
Rebecca Pinals
Jeff Wang
Darwin Yang
Sarah Yang

Undergraduates
Abhishek Aditham
Tanya Chaudhary
Aishy Murali
Ami Thakrar
Cindy Zhou

Stanley Fahn
Junior Faculty Award

SIMONS FOUNDATION

NIH MIRA R35
CEBRA R21
NINDS BRAIN initiative R21

Universities

CASI landry@berkeley.edu
landrylab.com

BASF
We create chemistry

ALFRED P. SLOAN FOUNDATION

Berkeley Neuroscience
Helen Wills Neuroscience Institute

Beckman
Arnold and Mabel

INNOVATIVE GENOMICS INSTITUTE

BRAIN & BEHAVIOR
RESEARCH FOUNDATION
Awarding NARSAD Grants

MIRA R35
CEBRA R21
NINDS BRAIN initiative R21

Young Investigator Award

Young Faculty Award

Bakar Fellows

Support Staff
Sigrid Allen (Berkeley)
Jeff Bui (Berkeley)
Karen Nelson (Berkeley)

Collaborators
Prof. Lela Vukovic (UT-EP)
Prof. Linda Wilbrecht (UC Berkeley)
Prof. Marla Feller (UC Berkeley)
Dr. Ron Zuckermann (LBNL)
Prof. Patrick Vora (George Mason U)
Prof. Robert Fromeke (NYU)
Prof. Brian Staskawicz (UC Berkeley)

Landry Lab
Dr. Travis Del Bonis O'Donnel
Dr. Eduardo Grandio
Dr. Sanghwa Jeong
Dr. Ian McFarlane
Dr. David Piekarski
Dr. Huan Zhang
Abraham Beyene
Gabriel Dorlhiac
Linda Chio
Frankie Cunningham
Gozde Demirer
Gabriel Dorlhiac
Natalie Goh
Alison Lui
Nick Ouassil
Rebecca Pinals
Jeff Wang
Darwin Yang
Sarah Yang

Undergraduates
Abhishek Aditham
Tanya Chaudhary
Aishy Murali
Ami Thakrar
Cindy Zhou

Stanley Fahn
Junior Faculty Award

SIMONS FOUNDATION

NIH MIRA R35
CEBRA R21
NINDS BRAIN initiative R21

Universities

CASI landry@berkeley.edu
landrylab.com

BASF
We create chemistry

ALFRED P. SLOAN FOUNDATION

Berkeley Neuroscience
Helen Wills Neuroscience Institute

Beckman
Arnold and Mabel

INNOVATIVE GENOMICS INSTITUTE

BRAIN & BEHAVIOR
RESEARCH FOUNDATION
Awarding NARSAD Grants

MIRA R35
CEBRA R21
NINDS BRAIN initiative R21

Young Investigator Award

Young Faculty Award

Bakar Fellows