ENVIRONMENTAL REMEDIATION AND SUSTAINABILITY

Karen L. Wooley, Texas A&M University, wooley@chem.tamu.edu
Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering

Hybrid inorganic-organic nanoparticles to address environmental pollutants

Natural product-based building blocks for sustainability
Oil Spill Response: Current methods of remediation

- Containment
 - Limits exposure
 - Facilitates recovery
- Bulk recovery
 - Current mechanical techniques
- Low concentrations
 - Sheen 0.04 to 50 µm on the water
- Current methods for sheen recovery

Images provided by Jonathan E. Sanders, MECX L.P.
Mode of Recyclable Deployment of MSCKs
Magnetic Shell Crosslinked Knedel-like (MSCK) Nanoparticles Designed for Pollutant Recovery

- Amphiphilic core-shell morphology:
 - Hydrophilic shell allows for suspension in water
 - Hydrophobic core sequesters hydrophobic pollutants

- Shell cross-linked protects micelles and stabilizes vessel
- Entrapped magnetic iron oxide nanoparticles
- High density NP loading

Crosslinking of Magneto Micelles

Well defined core-shell morphology observed in 3D scan

D_n: 79 ± 2 nm
D_v: 110 ± 50 nm
D_I: 200 ± 120 nm

D_n: 70 ± 12 nm

2,2’-(Ethylenedioxy)bis(ethylamine), EDCI

$\text{H}_2\text{N}-\text{O}-\text{O}-\text{NH}_2$

$\text{PAA}_{20}-b-\text{PS}_{280}$
Water and remaining oil in tests were decanted into vial to allow for extraction without the presence of MSCKs.

- Extraction of oil with chloroform
- GPC used for quantitative analysis
Sequestration Data and Oil Evaluation

10X oil uptake

- GC/MS analysis of extracted oil

Uptake of all oil fractions

<table>
<thead>
<tr>
<th>Initial MSCK: Oil</th>
<th>Recovery ratio</th>
<th>% oil recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:2.8</td>
<td>1:2.1</td>
<td>74.0%</td>
</tr>
<tr>
<td>1:5.1</td>
<td>1:4.4</td>
<td>85.9%</td>
</tr>
<tr>
<td>1:11.5</td>
<td>1:9.6</td>
<td>81.2%</td>
</tr>
<tr>
<td>1:16.8</td>
<td>1:10.2</td>
<td>60.6%</td>
</tr>
</tbody>
</table>

Magnet
Design of Fluorinated MSCK (MSCK-F$_9$) Nanoparticles

Hydrophilic shell allows for particle suspension in water

Fluorinated hydrophobic core facilitates nanoparticle assembly and provides an environment for capture of fluorinated and/or hydrophobic guests

PFOA is an environmentally-and biologically-persistent pollutant

Iron oxide nanoparticles entrapped in the core provide magnetic responsiveness

Shell crosslinks protect the morphological assembly while allowing for expansion and contraction

Hypothesis: Greater removal of PFOA due to size difference of nanoparticles ca. 60, 72, 40, and 42 nm in diameter.

At 35% PFOA recovery, ca. 0.35 mg PFOA/mg MSCK-F_9, PFOA removal is two orders of magnitude better than other reported nanomaterials!
New Multi-compartment MSCK Nanoclusters

- Satellite amphiphilic shell crosslinked knedel-like (SCK) nanoparticles
- SCK hydrophilic shell allows for water solubility and covalent linkage to inorganic component
- Hydrophobic core preferentially sequesters hydrophobic pollutants
- Incorporating SCKs with differing compositions offers enhanced tunability of material for targeted remediation
- Large inorganic core for magnetic response of the material

Magnetic Hybrid Networks (MHNs)

[Yingchao Chen w/Darrin Pochan]
Performance of the MHNs is Compromised in the Presence of Brine

- Formation of an emulsion was observed upon hand-shaking of the water/dodecane/MHN mixture.

Loading Capacity Ratio of the MHNs Towards Dodecane

- Emulsification ability can be compromised in saline environments.
- Maximum Capacity in water = *ca.* 30 mg of dodecane per 1 mg of MHNs
- Maximum Capacity in brine = *ca.* 17 mg of dodecane per 1 mg of MHNs
The MHNs Assemble at the Droplet Interface to Stabilize the Emulsion

- FITC was covalently bound to the MHNs
- Emulsions were formed by hand-shaking the dodecane/water/MHN mixture
• Nile red was dissolved in dodecane
• MHNs were not labeled with FITC
• Sample was excited with at a wavelength of 543 nm, the MHNs exhibit red fluorescence
The Emulsion Droplets are Magnetically-active

Potential Concerns with Unrecovered Nanoparticles

Decanting of remaining pollutant
c. 1 h

Recovery of Deployed Materials via Magnetic Action

- ca. 93% recovery after deployment
- ca. 90% recovery after organic wash
Idealized Polymer Life Cycle

Monomers (renewable resources)

Polymerization

Polymers (functional performance)

Degradation

Degradation products (biological/environmental resorption and clearance)

Benign (if lost in the environment, intact)
Current Status for Wooley Group Natural Product-based Polymers

Linear Polycarbonates w/control Over Regiochemistry

Glucose & other sugars

SUGAR PLASTICS™

Quinic Acid

Linear Polycarbonates and Block Copolymers by ROPs

Crosslinked Networks

Honokiol

Ferulic Acid

Amino Acids

Quercetin
Acknowledgements

Yingchao Chen
Jeniree Flores
Soon Mi Lim
Adriana Pavia-Sanders
Jonathan Sanders

Celine Besset
Jingwei Fan
Simcha Felder
Tiffany Gustafson
Xun He
Keith Hearon
Ashlee Jahnke
Samantha Kristufek
Lauren Link
Alexander Lonnecker
Koichiro Mikami
Amandine Noel
Lu Su
Yi-Yun Timothy Tsao
Kevin Wacker
Shiyi Zhang
Jiong Zou

National Science Foundation
(DMR-1105304 and DMR-1507429
CHE-1410272 and CHE-1610311)

W. T. Doherty-Welch Chair in Chemistry
(A-0001)