Toward Scalable Energy Efficient Learning Machines

H.-S. Philip Wong
Department of Electrical Engineering and Stanford SystemX Alliance
Stanford University, Stanford, California 94305, USA
E-mail: hspwong@stanford.edu

The key elements of a scalable, fast, and energy-efficient computation platform for learning machines are: massive on-chip memory co-located with highly energy-efficient computation, enabled by monolithic 3D integration using ultra-dense and fine-grained massive connectivity. There will be multiple layers of analog and digital memories [1] interleaved with computing logic, sensors, and application-specific devices. We call this technology platform N3XT – Nanoengineered Computing Systems Technology [2]. N3XT will support computing architectures that embrace sparsity, stochasticity, and device variability, including those that are neuromorphic and learning-based.

In this talk, I will give an overview of nanoscale memory and logic technologies for implementing N3XT. I will describe ENIGMA, a class of robust, energy-efficient learning machines using hyperdimensional computing [3], to be implemented [4] using the N3XT technology platform.

This work is a collaboration of UC Berkeley (Sayeef Salahuddin, Jan Rabaey, Pentti Kanerva, Bruno Olshausen) and Stanford University (Subhasish Mitra, H.-S. Philip Wong) in a project funded by the NSF (Award #1640060, https://nsf.gov/awardsearch/showAward?AWD_ID=1640060).

References: