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Abstract: We demonstrate lasing in optically pumped thresholdless coaxial nanolasers and show its unique properties. We demonstrate room temperature optically pumped metallo nanolasers, as well as77K-160K laser emission from electrically pumped 

versions.  We  also explore fundamental capabilities of nanolasers through the evaluation of the Purcell effect and temperature dependent spontaneous emission factor, as well as experimental and theoretical evaluations of second order coherence (G2).

Purcell factor and Spontaneous Emission factor at transparency [3,4]
Metallo-dielectric Nanolasers [2]

Optically Pumped Nanolaser Shield thickness

optimization

The gain medium is a 300nm thick InGaAs bulk gain layer grown on InP substrate.
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Electrically  pumped Nanolasers [5]

Thresholdless sub-wavelength coaxial lasers [1]

Gain medium 

 480nm thick InGaAsP-based 

Multiple Quantum Well (MQW)

 lattice matched to an InP 

substrate

Operates in plasmonic modes

Exhibit thresholdless behavior

Curious behavior of linewidth evolution
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Micro-PL experimental setup

1064nm pulsed/CW fiber laser

TE Cooled InGaAs Detector

InGaAs CCD Camera

70pm resolution Monochromator

TEM-like mode profile

Characterization results at 4.5K
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D(ω21): inhomogeneous broadening 

R(ω21): homogeneous broadening 

L(ωk): cavity lineshape
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Temperature dependence

Result: Reducing total cavity radius by 25nm, 

the dominant mode of Cavity 2 is blue-shifted 

resulting in β>0.5 for all T.

Summary: Emitter-field-reservoir model in the quantum 

theory of damping is used in the evaluation

• Reservoir (environment) being cavity boundary corresponds 

to the transparent medium condition, when gain medium is 

neither absorptive nor amplifying

• The aggregate of other emitters in the gain medium are not 

included in the reservoir

Challenge: To evaluate Purcell factor at all pump levels, an 

open (dissipative) system needs to be constructed 

Photon statistics in nanolasers

Goal: measure g2(τ) — the intensity 

correlation of nanolaser emission (or fourth-

order moment of the emitted electric field)
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Proposed Solution: spectrally filter nanolaser emission with a Fabry-Perot interferometer + Hanbury Brown Twiss

Challenge: photo-detector timing 

resolution >> coherence time of nanolaser

(i.e. TD >> τc @ ~1550nm) 0
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