About the Center for Probing the Nanoscale

Stanford University and IBM Corporation, with funding from National Science Foundation, founded the Center for Probing the Nanoscale to achieve five principal goals:
- develop novel probes that dramatically improve our capability to observe, manipulate, and control nanoscale objects and phenomena
- educate the next generation of scientists and engineers regarding the theory and practice of these probes
- apply these novel probes to answer fundamental questions in science and technology
- transfer our technology to industry in order to make these novel probes widely available
- inspire students, teachers and the public about nanotechnology

Nanoscale Electrical Imaging

Goldhaber-Gordon, Shen, Pruitt

- Measure electronic properties of materials at 10-nm resolution.
- Tools under development:
 - Scanning Gate Microscopy (SGM): Electrostatic coupling of a quasi-DC tip voltage to sample. Continuing studies on local charge transport in graphene, complex oxides, and topological insulators.
 - Microwave Impedance Microscopy (MIM): Electric or magnetic coupling of a microwave signal from a tip to a sample. Continuing studies on electronic phase transitions in manganites, 2DEG systems, topological insulators, and ferroelectrics.

Individual Nanomagnet Characterization

Moler, Kirtley, Kapitulnik, Rugar

- Develop and demonstrate techniques with the magnetic sensitivity and spatial resolution to characterize individual nanomagnets.
- Advancing development of Nanoscale Magnetic Resonance Imaging toward a molecular structure microscope.
- Tools under development:
 - Scanning Superconducting Interference Device (SQUID) Microscopy: Extremely sensitive sensor for imaging local magnetic fields.
 - Scanning Sagnac Microscopy: Interferometric technique for magneto-optic imaging based on the polar Kerr Effect.
 - nanoMRI: Chemically specific 3D imaging of molecular structures using magnetic resonance force microscopy and nitrogen-vacancy (NV) centers in diamond.

Bio-Probes

Melosh, Solgaard, Butte

- Measure the forces, mechanical properties, and dynamics of biological membranes with critical resolutions of nanometers, microns, and pN by developing and using novel probes.
- Combine ultrafast cantilevers with bio-functionalized stealth probes to insert into the membrane in order to gain insight on designing improved cell-entry agents.
- Use probes to stimulate and characterize T-cells in order to understand immune activation.

SEM image of ultrathin cantilevers for dynamic force measurement.

These interdigitated AFM probes are fabricated using standard MEMS processing techniques. The relative displacement between these two sets of fingers (measured interferometrically) is a measure of the tip-sample interaction force.

SEM image of an AFM probe assembled onto an optical fiber.

With their micron-size form factor, fiber facet AFM systems open up new applications of the technique, such as in vivo imaging of live cells. The device uses a Fabry-Perot Cavity made of photonic crystal mirrors where the cavity doubles as the release structure of the device. In the image shown, the tip was made on a separate wafer and welded onto the final device using a focused ion beam.

Selected Recent Publications

Center Management

Director:
David Goldhaber-Gordon
gordon@stanford.edu

Deputy Director:
Melosh
nmelosh@stanford.edu

Associate Director:
W. Maria Wang
wmw@stanford.edu

Program Manager:
Laraine Lietz-Lucas
lietz@stanford.edu