Copper and Zinc Nanoparticle Interactions with Nitrogen Cycling Bacteria

Vincent C. Reyes¹, Amanda West¹, Robert Damoiseaux^{2,3,4}, and Shaily Mahendra¹

Department of Civil & Environmental Engineering¹, California NanoSystems Institute², Molecular Shared Screening Resource³, and Center for Environmental Implications of Nanotechnology⁴, University of California, Los Angeles, 90095

Abstract

Interactions of engineered nanoparticles (NPs) with microorganisms driving the nitrogen cycle might have implications for food production, eutrophication of natural waters, and atmospheric nitrous oxide generation processes. Previous studies have shown that copper and zinc NPs can affect microbial communities differentially. In this study, copper containing nanomaterials, specifically nCu & nCuO, were tested because metal containing nanomaterials comprise the highest percentage of consumer NPs produced. Pure cultures of the nitrifying bacterium, Nitrosomonas europaea, and the nitrogen-fixing bacterium, Azotobacter vinelandii were selected as model microorganisms mediating two important processes in the nitrogen cycle. High throughput fluorescence assays based on ATP content determined that nCu showed similar effects across organisms. IC₅₀ values decreased between time points; from 75.5 \pm 8.2 to 54.2 \pm 7.1 mg/L for *N. Europaea* and 49.8 \pm 9.8 to $21 \pm 14.2 \text{ mg/L}$ in *A. vinelandii*. In the range tested, nCuO was not toxic to these bacteria. Particle size and zeta potential measurements imply that the stability of nCu and nCuO affects their differential toxicity. Copy numbers of nitrogen fixation (nif) genes in exposed cells were lower at 48 hr, suggesting greater stress at late exponential/stationary phase. This confirmed time-dependent behavior observed in the ATP assays. These results are valuable for designing our ongoing and future studies on environmental microbial communities involved in nitrogen cycling.

Background

Novel NP properties encourage use and product development

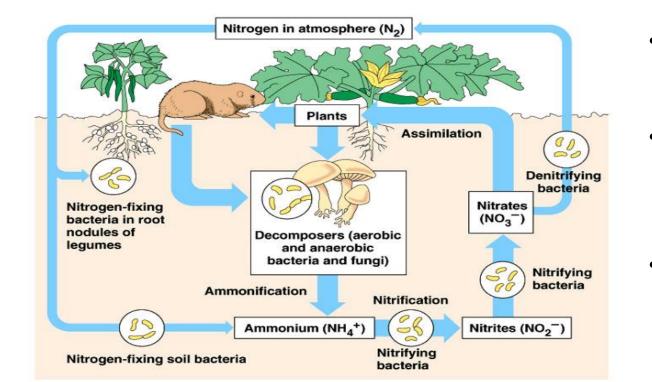
Copper Nanoparticles

NSP

•Applications: filtration devices, cosmetics, electrodes, alloys, steel manufacturing, coatings and sealants.

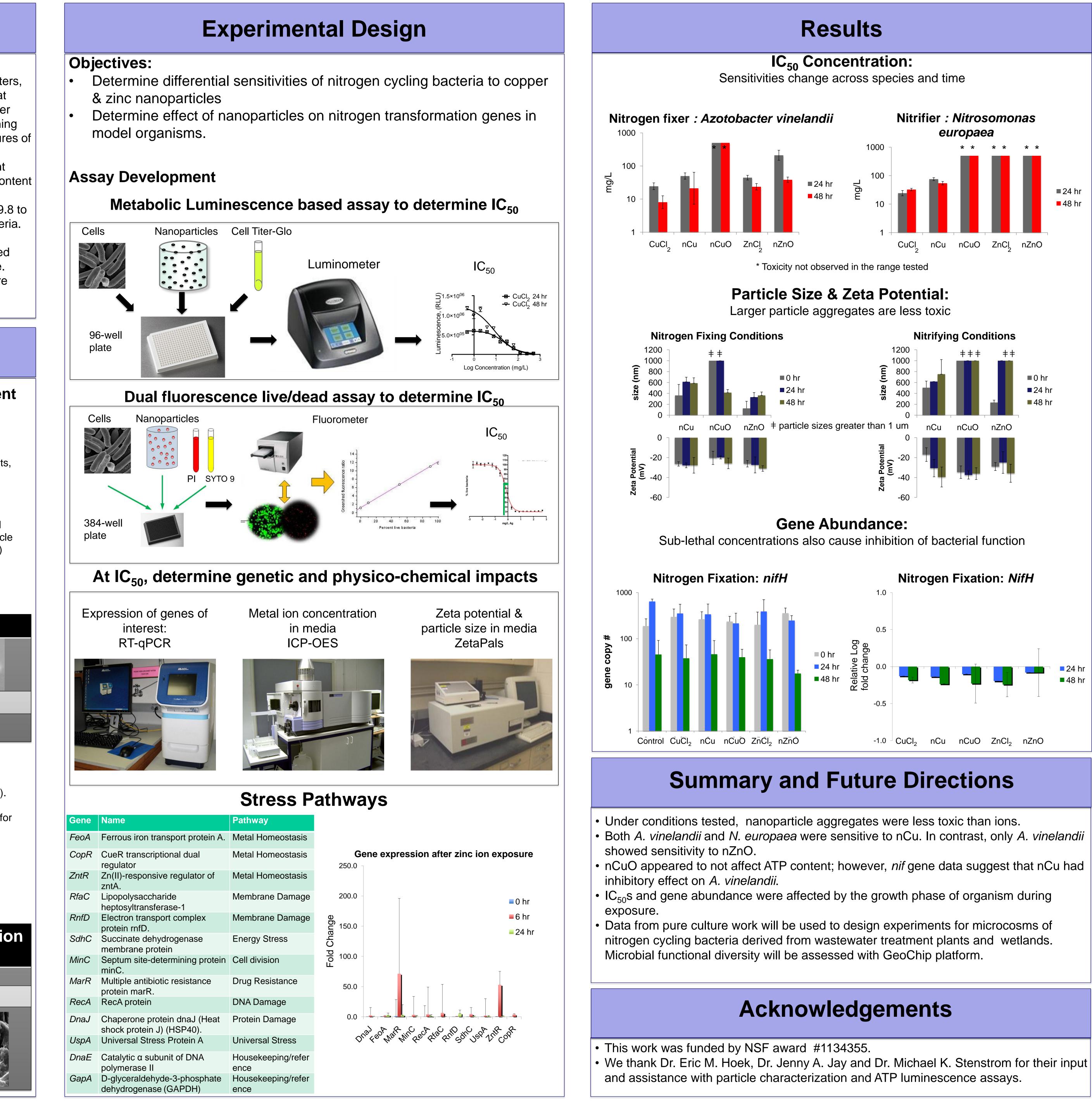
•12k publications within the past decade, > 2k in l year

Zinc Nanoparticles


•Applications: cosmetics, tires, paints, plastics additives, ceramics, and semiconductors

•2010: 5th most used **Consumer Nanoparticle** (nanotechproject.org)

Nanoparticles tested:


	nCu	nCuO	nZnO
Size (nm)	50	40	10
Control Salt	CuCl ₂	CuCl ₂	ZnCl ₂

Nitrogen Cycle is primarily driven by microorganisms

- Management of Nitrogen Cycle is a Grand Challenge for 21st Century (NAE).
- Nitrogen imbalances have implications for food production, eutrophication, & atmospheric nitrous oxide generation.
- NPs may differentially impact nitrogen cycling bacteria resulting in sinks

	Nitrogen Fixation	Nitrification	Denitrifcati
Organism	A. vinelandii	N. europaea	P. stutzeri
Gene of Interest	nifH	amoA	nirK

