Nanotechnology in the SBIR/STTR Programs at NSF

T. James Rudd
Grace J. Wang
Ben Schrag

Industrial Innovation and Partnerships Division
Engineering Directorate
National Science Foundation

Nanoscale Science and Engineering Grantees Conference
National Science Foundation
Arlington, VA
December 7th, 2010
SBIR/STTR Funding Criteria

- Project must be innovative
- Must demonstrate high commercial potential and/or societal benefit
- SBIR program supports high risk* component

* From the market viewpoint
NSF SBIR/STTR Innovation Model

Phase I B
1:2 NSF Matching

PHASE I
Feasibility Research
$150k/6 mos

PHASE II
Research towards Prototype
$500k/24 mos

PHASE III
Product Development to Commercial Market

Private Sector or Non-SBIR Investment

MATCH MAKER

1:2 NSF Matching

Federal Investment

Taxes

NSF SBIR/STTR Innovation Model
Technologies Supported in SBIR/STTR Program at NSF

- Nanotechnology, Advanced Materials & Manufacturing
- Biotechnology and Chemical Technologies
- Information and Communication Technologies
- Education Applications
Nanotechnology Thrusts in SBIR/STTR at NSF

- Nanomaterials
- Nanomanufacturing
- Nanoelectronics and Active Nanostructures
- Nanotechnology for Biological and Medical Applications
- Instrumentation for Nanotechnology
NSF SBIR/STTR Investment in Nanotechnology (FY 2010)

- Nanomaterials: 58%
- Nano Device and Systems: 18%
- Instrumentation for Nano: 10%
- Nanomanufacturing: 12%
- EHS: 2%
Examples of Nanotechnology Applications

- Selected examples of nanotechnology applications funded by SBIR/STTR program at NSF through FY 2008
Nano - composites
Impacts
- Aerospace applications call for materials that provide weight reduction while maintaining performance
- Nf²-M reinforcements provide significant performance increases in composite parts
- 25X increase in composite electrical conductivity
- 5X increase in composite thermal conductivity
- Structural, thermal, electrical aerospace applications (de-icing, lightning strike, numerous structural applications)

Novelty
- Carbon nanotubes grown from the surface of continuous fibers
- Low cost, easily scaleable, continuous process
- No modification to existing composite manufacturing infrastructure
- Successfully demonstrated on carbon, glass, alumina, quartz, silicon carbide fiber

Lineage
- Related Work:
 - N68335-10-C-0176
 - N68335-07-C-0152
 - N00015-09-1-0925

Company Mission
- Utilizing our patented Nf²-M process, our mission is to introduce a new platform of reinforcement materials for the aerospace industry that demonstrate significant increases in composite mechanical, thermal, and electrical performance.
- Team: Dr. Jason Lincoln (PI), P²SI
 - Dr. David Curliss, P²SI
 - Mr. Zach McHale, P²SI
Dry Thermal Adhesive Tape Based on Carbon Nanotubes

IMPACT

- Enables smaller, more complex and higher power density electrical and mechanical devices
- High thermal conductance without messy grease

NOVELTY

- Double-Sided Flexible CNT Tape
- Strongly adheres two surfaces together without residue via nano scale Van der Waals forces

LINEAGE

- Progression from 1cm² to 100cm² CNT (wafer level) tapes through the use of a custom built production scale furnace
- Scalable production of Single and Double sided flexible CNT tapes
- Greater CNT array adhesion than the gecko foot
- 10x lower thermal interface resistance than off-the-shelf thermal greases

ABOUT ATLAS

Our mission is to bring to market adhesive tape products based on CNTs that provide enhanced thermal and electrical conductivity in a reusable adhesive tape

Scientific Team:
- Dr. Ali Kashani, Chief Operations and Scientific Officer
- Yang Zhao, Chief Technology Officer
- Jay Longson, VP of Research
- Plus additional Nanotechnology experts

Commercialization Team:
- Rob Steir, Todd Smith, Stew Sando
 (combined 70 years of business experience)
STTR Phase II
Grant Number 0822914
Company MemPro Ceramics Corporation
PI Dr. Gary Carlson

Impact

Market Factors
• Increased catalyst efficiency
• Expanded thermal stability
• Allows OEMs and catalyst suppliers to expand current product offerings and market sectors

Societal Factors
• Increase chemical production efficiencies
• Pollution reduction and control
• Enhanced particulate removal from industrial and motor vehicle emissions

Novelty

Technology Synopsis
• Catalyst support media
• Various ceramic materials
• Produced by electrospinning followed by calcination

Material Advantages
• Favorable catalyst particle size and dispersion
• Enhanced thermal stability
• Lightweight

Lineage

Technology Origins
• Co-developed by MemPro and the University of Akron
 1993 Initial technology development
• 2001 Investigations into ceramic nanofiber production
• 2005 Patent issued on the use of catalysts within nanofibers
• 2005 MemPro acquires license from University of Akron
• 2007 Production of ceramic nanofibers with noble metals
• 2009 Patent pending – CCN for engine exhaust treatment

Company Mission

Innovation Vision
• Develop an array of cost effective, environmentally sound materials into various products or sold as nanofiber materials to OEMs and/or catalyst product manufacturers

The Innovation Team

Collaboration between MemPro Ceramics Corporation and the University of Akron (Akron, OH)
Nanocomposite Foil for Bonding
Reactive Nanotechnologies, Inc

NanoBond® Joining of Electronic Components

- Enables direct solder attach between silicon and thermal management components without exposing them to reflow temperatures
- High thermal conductivity: 4-8X improvement over current commercial solutions
- Lower residual stress
- Bond dissimilar materials

Joining Configuration
Nano-instrumentation
Impact (Market/Societal)
- Adds chemical measurements to the SPM capabilities
- Provides high resolution spectroscopic imaging to the FTIR and IR microscope users
- Primary markets:
 - Polymers
 - Life Sciences

Novelty
- Breaks the diffraction limit for IR microspectroscopy providing spatial resolution up to 100 nm
- Provides topography, chemical, mechanical and thermal measurements in an integrated SPM system
- IR spectra directly comparable to FTIR absorption spectra allowing usage of the vast FTIR libraries

Technology
- Initially invented by A. Dazzi
- Developed and patented by Anasys Instruments

Company / Mission
- Quantitative nanoscale property measurements based on probe technologies
- Proprietary IP and technology breakthroughs
- Team:
 - Kevin Kjoller: VP / Product Development
 - Craig Prater: CTO
Impact
- Enables new industrial applications for AFM (advanced metrology, nanomanufacturing)
- Enables new scientific applications, including advanced nanotribology and nanomechanics experiments
- Enables new applications that take advantage of molded diamond structures
- Provides outstanding training for personnel micro/nanofabrication, advanced materials, and nanotechnology

Novelty
- First diamond MEMS devices made with high yields that meet specifications (frequencies, force constants)
- First successful production of monolithic diamond AFM probes, NaDiaProbes™, suitable for use in a broad variety of AFM instruments.
- First direct comparisons of dimensional stability between probes made of different materials, using known theories of contact mechanics.

Lineage
- Ultrananocrystalline diamond (UNCD®) originally developed at Argonne National Laboratory.
- ADT founded in 2003 to commercialize the technology (first ANL spinout).
- ADT today: 17 employees, selling three product families (wafers, seals, probes).
- Visit ADT on the web at www.thindiamond.com

Company Mission
- TEAM: ADT, Uni. of Pennsylvania (R. Carpick), Uni. Of Wisconsin (K. Turner), several grad. students and posdocs
- Develop UNCD-enabled Microdevices leveraging process improvements developed with NSF’s SBIR support
- Overcome technical barriers as needed to bring a NaDiaProbe product line to market for general purpose contact and dynamic mode imaging.
- Refine the understanding of tip/substrate nanoscale processes and interactions and correlate with probe fabrication processes and performance.
Environmental nanotechnology
Water Purification Technology for the Removal of Chemical & Biological Contaminants

Crystal Clear Technologies, Inc.

Lisa M. Farmen

IMPACT

- **Industrial:** Removes metal contaminants without generating a waste stream.
- **Societal:** Technology can purify enough water for one person for a year for $1.00

NOVELTY

NMX™ nano-coated filter media can be recharged, with a “double sticky tape” ligand and accumulate numerous layers of metal before the media exhausts.

LINEAGE:
- Funding from Siemens for field test
- Validation samples at Dow Water
- MOU with CDI for OEM manufacturing
- Sandia Nat’l. Labs – filter testing
- CRADA – NUS, NRL, UO
- Licensing with Ga Tech/NUS
- ONAMI Gap Grant $225K

COMPANY MISSION

To commercialize low cost water purification products at a cost affordable to the majority of the world’s population.
A Quality Monitor for Enabling Water Recycling in Semiconductors
Uncopiers, Inc. – Dr. Bingrong He

- A new to the world in-liquid particle detector for monitoring UPW quality.
- Yield ensuring metrology for IC Manufacturing.
- Facilitates water conservation by enabling water recycling.
- Advances state of the art in sub-100nm particle detection

- ACIM Technology is being pioneered at Uncopiers, Inc.
- ACIM constructively controls microcavitation.
- ACIM is singularly energy efficient.
- ACIM uses only silent sound and clean water.
- ACIM is environmentally sound.

Sub-100 nm particle detection is accomplished by the following technical features:
1. Control of phase-nucleation, bubble formation, at an in-liquid particle.
2. High frequency pulse-echo protocol to infer bubble and hence the particle presence.
3. Non-contact, in situ processing via acoustics.

- Uncopiers, Inc. is located in Manhattan Kansas.
- Uncopiers was founded in November 1999.
- Uncopiers prime purpose is to commercialize its ACIM technology.
- Uncopiers is its team of invaluable ten.
- Uncopiers facilities have been uniquely designed to explore and harness ACIM.

Uncopiers was founded to realize the platform promise of ACIM

ACIM – Acoustic Coaxing Induced Microcavitation
Nano - coatings
STTR Phase II: Novel Nanocoated Ferromagnetic Materials

Technical Objectives:
• Develop Atomic Layer Deposition (ALD) chemistry for placing conformal, pinhole-free, and nanothick alumina films on individual primary particles.
• Produce Kilograms of nanocoated fine iron powders using a scaleable fluidized bed process.
• Characterize the product: film thickness, composition, crystallinity, particle size distribution, surface area, oxidation resistance, magnetic moment.

Goals:
• Use Particle-ALD™ to Deposit Nanothick Films on Fine Particles.
• Develop Pilot Scale Production Capabilities for Particle-ALD™.
• Develop Link to Consumer Products for Nanocoated Fine particles through use of Strategic Partners.

Commercialization Strategy:
• Work with Strategic Partners to Design materials for the Aerospace, Electronic, and Automotive Industries.
• Using Facilities proven during Phase II, provide materials for Consumer Product Development.
• License or Manufacture coated particles designed through Phase II to Strategic Partners as needs dictate.
Ultrananocrystalline Diamond as Wear Resistant and Protective Coating for Mechanical Shaft Seal Applications

Advanced Diamond Technologies, Inc.

Impact
- John Crane offers largest product line with UNCD®
- Advanced Diamond Technologies, Inc. (ADT) selling UNCD seals to direct users (www.diamondseals.com)
- Reduced energy consumption, wear

Novelty
- Reduction in seal face friction by 75%
- Multiples of decrease in wear from SiC in accelerated wear testing with hot-water (250F, 150 psig).
- Smooth diamond suitable for use with conventional mating ring

Lineage
- UNCD resulted from 10+ years of R&D at DOE’s Argonne National Laboratory (ANL)
- Advanced Diamond Technologies, Inc. spun out of ANL in 2003, and is exclusive commercial source of UNCD.
- Other products in market or development include UNCD wafers, AFM probes, supported by NSF SBIR programs

Company Mission
- TEAM: ADT (prime), ANL, John Crane NA
- Product-oriented company focused on thin, smooth diamond
- *We solve hard problems™*
Nanocomposite Temperature-Adaptive Solid Lubricant Coating for Cutting Tools
Nanomech, Inc

- Novel composite coating for cutting tools comprising:
 - NanoTuff™ hard coating made of cubic boron nitride and titanium nitride (cBN-TiN)
 - Nanoparticles-based temperature adaptive solid lubricant coating made of zinc oxide and molybdenum disulphide (ZnO, MoS₂)

- Solid lubricant is temperature-adaptive and self-replenishing
 - Lubricant resides in reservoirs created by micro-structured surface of the NanoTuff™ hard coating

- Target applications:
 - Hard turning – manufacturers want to move from grinding of hardened steels to hard turning, thus lowering costs and increasing productivity
 - Dry machining – growing need to reduce or eliminate use of cutting fluids due to cost and environmental impact of fluids
Title: “Fe–nanoparticle Coating of Anisotropic Magnet Powder for Nanocomposite Permanent Magnets with Enhanced \((BH)_{max}\)”

Company Name: Electron Energy Corporation (Landisville, PA)

PI Name: Jinfang Liu

Impact (Market/Societal)

The objective of this project is the synthesis of composite magnets coated with Fe or Fe-based nanoparticles for the development of permanent magnets with superior magnetic properties. A sketch of the morphology of the (nano)composite powders and consolidated nanocomposite magnets is shown below.

![Morphology of composite powders](image)

Current SBIR data: Back scattered electron SEM micrographs of composite magnets with different morphologies, consisting of a hard magnetic phase (rare earth–based intermetallic compound) surrounded by a soft magnetic phase (Fe nanoparticles).

Novelty (Technical)

The proposed technology can approach the theoretical performance potential of double the current state of the art permanent magnets. This technology could lead to the development of a new class of high performance nanocomposite magnets with much higher maximum energy product, \((BH)_{max}\), or magnetic strength. This technology could have a significant impact on many devices in which the actuation or sensing is based on a magnetic field produced by permanent magnets. The applications include consumer electronics, renewable energy, electric vehicles, medical and military applications, etc.

If successfully implemented into practice, the proposed technology could lead to the development of a new class of high performance nanocomposite magnets with much higher maximum energy product, \((BH)_{max}\), or magnetic strength. This technology could have a significant impact on many devices in which the actuation or sensing is based on a magnetic field produced by permanent magnets. The applications include consumer electronics, renewable energy, electric vehicles, medical and military applications, etc.

1990s: Theoretical prediction that two phase nanocomposite magnets consisting of:

- a hard magnetic phase
- a soft magnetic phase

may exhibit a maximum energy product \((BH)_{max}\) twice the value of the current magnets.

Lineage (Origins of the Technology)

ISO 9001:2000

Company Mission: (Include the Team)

Company Mission: to be specialists in rare earth magnets and magnet systems, providing innovative solutions for precise technical challenges. Project partner: University of Delaware, Department of Physics and Astronomy, Prof. George Hadjipanayis’s Group.

EEC Key Personnel

- Dr. Jinfang Liu, V.P. of Technology and Engineering, plays a leadership role in magnet material’s development as well as magnet applications development for the company.
- Dr. Melania Marinescu, Manager of Process Technology, focuses on the improvement of magnetic performance of the current permanent magnets through process and chemistry optimizations and the development of new (nano)composite magnets.
- Peter C. Dent, V.P. of New Business Development, is responsible for leading the product introduction to the market and product licensing programs.

This research was sponsored by the NASA Glenn Research Center under the Grant NNC06CA04C.
Nano - biotechnology
Targeted Drug Delivery
Nanospectra Biosciences, Inc

AuroShells Injected into Blood Will Exit Through Holes and Lodge in Tumor, Target Vasculature Receptors
AuroLase™ Therapy Thermally Destroys Tumors

AuroShells Convert Light into Heat to Destroy Tumor

Near-IR Laser

Tumor Cells

Blood Supply
Synthetic Bone Material - NanOss™

Angstrom Medica

- Structural Medical Devices
 - Osteoconductive
 - Remodels into Bone Over Time

- Injectable Cement
 - Endothermic, Rapid-setting
 - Structural, Weight-bearing

- Bioactive Coatings
 - Micron Thicknesses
 - Can Act as a Carrier

Proprietary and Confidential
Drug and medical devices combinations a growing trend
- Coronary stents first blockbuster example
- Broad market opportunities
- Modify the body’s response to implanted devices
- ElectroNanospray™ technology
 - U Minnesota
 - David Pui, Daren Chen inventors
 - Nanocopoeia improvements
 - World-wide exclusive license

Drug/polymer combinations
- Non-line-of-sight coatings on complex structures
- Able to engineer/control drug release profiles
- Bring novel drug delivery applications to market that solve clinical challenges
- Drug coatings to improve therapeutic performance of medical device implants, including stents
STTR Grant Number: 0620572

“Antibacterially-Active Nanoparticles”
Nanopharma Technologies, Inc.
Drs. Edward Turos, Seyoung Jang

<table>
<thead>
<tr>
<th>Impact (Market/Societal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotics</td>
</tr>
<tr>
<td>Nanobiotics</td>
</tr>
</tbody>
</table>

Platform Technologies for Biodefense and Nanoscience

<table>
<thead>
<tr>
<th>Novelty (Technical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen G-nanoparticles</td>
</tr>
</tbody>
</table>

* Infectious Diseases (MRSA) Treatment
* Target delivery and rejuvenation

| Lineage (Origins of the Technology) |

| Company Mission |

Development of
Nanoparticle Drug Delivery Platform

for delivery of water-insoluble drugs
to greatly enhance the efficiency and enzyme stability of antibiotic agents

providing *a potential means to clinically overcome resistance* that the infectious agent has acquired to an antibiotic such as penicillin.

MRSA MIC = 2 µg/mL Scanning Electron Microscope Image
Nano - electronics
Thin Film Transistors: Silicon Nanowires
Nanosys, Inc

High Performance, large area nano-structured macro-electronics substrate technology

- TFT Backplane Drivers – Integrated Edge Electronics
- Beam-Steering Antennas
- Eliminates high-temperature steps required for semiconductor deposition
- Dramatically reduces manufacturing cost, time and complexity
- Deposition on virtually any substrate material possible

A variety of application areas:
- Portable & large-area flat panel displays
- Low-cost RFID and smart cards
- Electronically steerable phased-array RF antennas

- RFID Tags
Impact

Target: Ultralow K <2 interlayer dielectrics to enable “next gen” chips (ITRS Roadmap)

Minimizing “crosstalk” between chip layers permits faster, smaller semiconductors for device computing power and miniaturization

Ultralow K ILD forecast >$150MM in 2012

Novelty

PAMAMOS dendrimers form covalently crosslinked honeycomb networks by spin-on and cure

Closed-cell nanoporosity (2-4 nm) introduced upon thermal degradation to form insulator

Lineage

- Dendrimers, a new class of polymer architecture were invented in late 1970’s-1980’s

- Commercial production of PAMAM (polyamidoamine) dendrimers begins at Dendritech (1990’s)

- Patented invention of the first silicon-containing dendrimers (PAMAMOS) in 1990’s-2000’s

Company Mission

- Commercial supply of PAMAM dendrimers for enhanced value in customer products

- Custom-built plant for reliable supply of PAMAM dendrimers since 1994

- 6 patents on PAMAMOS dendrimers

Team:

- Dr. Petar Dvornic, PI
- Dr. Steven Kaganove, R&D
- Emery Scheibert, Manufacturing
- Mark Kaiser, Market Development
Impact (Market/Societal)

- Projected revenue of the market of solar cells - $23.1B
- Thin-film amorphous silicon (TFAS) solar cells capture 20% of the market.
- Increasing power efficiency from 6-7.5% up to 10% would have dramatic impact on the market.

Novelty (Technical)

Power efficiency of low-cost and mature TFAS solar cells is increased by

- Using the effect of Multiple Exciton Generation (MEG) in quantum-confined semiconductor nanocrystals embedded into amorphous Si p-n junction and
- Fast separation of the electron-hole pairs in built-in electric field of the p-n junction

Lineage (Origins of the Technology)

- Demonstration of Multiple Exciton Generation (MEG) in semiconductor nanocrystals (LANL, NREL)
- Patent pending invention of company president, Dr. S. Krivoshlykov, who proposed to incorporate the semiconductor nanocrystals into amorphous silicon p-n junction (Patent Application: 11/439,626)

Company Mission (Team)

Mission: Development of the emerging nano-technology and manufacturing of the nanocrystal solar cells

Team: Dr. Sergei Krivoshlykov (project management, technology development & commercialization) Dr. Valery Rupasov (theoretical estimates)

Seeking: Equity Investment & Partnership for product manufacturing and marketing.
Photovoltaics: Nanoparticle co-sensitizers for increased efficiency.
Konarka, Inc

From Light to Power

Polymer photovoltaic products in a variety of form factors for commercial, industrial, military and consumer applications

- Uses photoactive dyes & conducting polymers
- High-speed manufacturing processes
- Low temperature environment
- Uses low cost materials
- Highly scaleable

Mass customization from a single source
World solar PV market: CAGR > 35%
20+ patents pending

Schematic of Dye Sensitized Titania Cell
Total thickness 0.01 inch
Spintronics Non-volatile Memory
Grandis, Inc

Spin Transfer Torque RAM (STT-RAM)
- Fast: less than 10ns read/write
- Non-volatile memory: >10 year lifetime
- Scalable: beyond 65nm
- Low Power
- Multiple bits per cell capable
- Compatible with semiconductor processes

SBIR PHASE II Grant
- Allows Grandis to continue materials research to enable an advanced demo chip to accelerate commercialization.

Copyright © 2007 Grandis, Inc
<table>
<thead>
<tr>
<th>Technology:</th>
<th>Outside Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Rate, High Capacity Anodes for Rechargeable Li Batteries Based on Metal Oxide Nano Composites</td>
<td>NASA Contract: $2,200,000 Acquired by A123 Company</td>
</tr>
</tbody>
</table>

Goals:
- Reduce irreversible capacity to <15%
- >300 mAh/g reversible capacity
- >10C at 80% rated capacity and 80% DOD
- Achieve projected material costs of <$10/kg

Commercialization Strategy:
- System payoff: 30-50% reduction in large format lithium-ion battery size
- Develop a cost-competitive battery suitable for HEV, UPS, military and aerospace applications
- Strategic Partnerships for joint development of new materials: materials production and battery manufacturing
Lithium Reservoir Nanocarbons for Lithium Ion Batteries
Applied Sciences, Inc

<table>
<thead>
<tr>
<th>IMPACT</th>
<th>NOVELTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Enables Long-Range HEVs and EVs</td>
<td>• High Capacity Anodes for Li-Ion Battery</td>
</tr>
<tr>
<td>• Supports Alternative Energy Use</td>
<td>• Safe Performing Battery</td>
</tr>
<tr>
<td>• Reduces Emissions</td>
<td></td>
</tr>
<tr>
<td>• Reduces Dependence Upon Foreign Oil</td>
<td></td>
</tr>
<tr>
<td>• Creates Domestic Manufacturing Jobs</td>
<td></td>
</tr>
</tbody>
</table>

LINEAGE

- **Technology**
 - Carbon Nanofiber – GM, ASI, PPI
 - Anode – ASI, PPI, GM, Others
- **Funding Source**
 - NSF → GM → Ohio Fund → A123
 - $3 M Secured
 - $8 M Investment for 400 k lb/yr demand in 2013
 - Revenues of $26 M by 2013
 - ROI > 45% in 2013

COMPANY MISSION

- **High Performance Li-Ion Battery → Chevy Volt**
- Insertion in 2011 at 30 k lb/yr
- Revenues of $26 M by 2013
- ROI > 45% in 2013
Nano - manufacturing
Impact

- Stronger, stiffer, lighter and cheaper plastics
- Lighter automobiles with improved fuel efficiency
- Reduction in CO\textsubscript{2} emissions
- Enhanced barrier properties, improved durability
- Recyclable plastics for a longer life cycle
- Represents a highly competitive new niche in the 66 B global polymer additives industry

Novelty

- Porous frameworks allow for particle networking
- Low cost, non-toxic synthetic silicate nanoparticles
- Dispersible without the need for surface modifiers

Lineage

Michigan State University
- NSF – funded basic research on metal oxides with intracrystal porosity and high surface areas (1992-2004)
- International patent applications (2004-2008)

Claytec, Inc.
- NSF-SBIR Phase I (January 2007)
- NSF-Phase II (2008-2010)

Company Mission

Thomas J. Pinnavaia – President
Joel Dulebohn, Ph.D. – Operations Manager
SeongSu Kim, Ph.D. – Senior Scientist

Claytec, Inc. solves challenging chemical and material problems through innovative porous metal oxide chemistry. Our mission includes the development of porous nanoparticles for advanced applications in automotive, green energy (wind turbines), electrical cables, and catalytic bio-fuel production.
Supercritical Fluid Processing of Polymer/Clay Nanocomposites
nanoScience Engineering Corporation
Steve Horsch

Impact
- Create jobs
- Create wealth for investors
- Increase shelf-life of perishables
- Introduce high performance nanocomposites in products

Novelty
- Green, economical process
- Highly dispersed nanofillers
- Improved mechanical, thermal properties
- Improved barrier properties

Lineage
- Joint Development Agreements
- Raised $500,000 venture capital/investors
- Collaboration with WSU/Clemson

Company Mission
- Value: Highly dispersed nanofillers at a competitive price
- Team: Experienced entrepreneurs and Research Scientists
- Exit Strategy: IPO, Strategic Partnership, or Sale
SBIR Phase IIB: Commercial Combustion
Synthesis of Homogeneous Lots of Carbon Nanotubes (IIP-0522093)

Henning Richter, hrichter@nano-c.com

<table>
<thead>
<tr>
<th>Impact</th>
<th>Novelty</th>
</tr>
</thead>
</table>
| • Large-scale manufacture of **single-walled carbon nanotubes** (SWCNT)
- Energy generation and storage
- Electronics and sensors
- Improvement of polymer **properties**
- Filtration and separation | • **Selective combustion** synthesis of (SWCNT) or fullerenes
- Exothermic, scalable, reproducible
- Length control
- Hydrogen formation |

<table>
<thead>
<tr>
<th>Lineage</th>
<th>Company Mission</th>
</tr>
</thead>
</table>
| • Founded **in 2001** to commercialize MIT technology
- **license** for fullerene synthesis in Japan
• **Development contracts** in place
• **5+ patents**, >10 pending and in-licensed
• $7 MM invested between ’01 and ’09
• $2.9 MM NSF ATP award | • **Leading manufacturer** of fullerenic materials and derivatives, **licensor**
• Experienced technical and business team
• Capture downstream value by **internal and collaborative application work**
• Major development effort in SWCNT dispersions and their use for **transparent conducting films** |
Continuous Flow Reactor & Size-Selection Scheme for Use in High Throughput Manufacture of Si Nanoparticles

Technical Objectives:
• High quantum yields
• Tunable emission
• Defect-free particles

Goals:
• Si nanomanufacturing system
• Process parameters
• 5 grams/hour

Commercialization Strategy:
• IP portfolio
• Cell phones, exit lighting (short term)
• Solid-State Lighting
Gentle Atomic Level Chemical Mechanical Smoothening (CMS) of Gallium Nitride Substrates

Sinmat, inc

Impact
- Increasing demand for WBG devices for RF, power & opto-electronic applications
- GaN components sales > $7.2 Billion by 2009
- Great potential for energy saving devices
- Creation of new hi-tech R&D and manufacturing jobs

Novelty
- Novel polishing process (chemistry, particles, etc.) for bulk GaN & GaN films on various substrates
- Atomic level polishing
- High removal rate
- Uniform, low defect polish over large area: high yield/low cost
- Scalable > 2” substrates
- Good reproducibility

Lineage
- Idea conceived and developed at Sinmat Inc.
- Patent applications in preparation
- Selective results have been published
- Collaborations with University of Florida (UF) for film deposition, device fabrication, testing and data analysis
- Several companies interested in Sinmat’s process, and supplying substrates for evaluation of GaN polishing process

Sinmat Inc.’s Mission & Goals
- Establish a leadership position in providing value-driven semiconductor solutions to industry on planarization technologies
- Establish strategic industrial partnerships for R&D, marketing, sales, & services
- Build up Intellectual Property portfolio (5 licensed patents & several pending applications)
- Teams: Sinmat scientists (9 PhDs); UF (Profs. Pearton & Abernathy); Advisors & Consultants
Summary

- In FY 2010 the NSF SBIR/STTR program made over 140 nano-related grants and over 40 supplemental grants to small companies totaling $29 MM.
- Across the whole Federal government SBIR/STTR programs accounted for close to $100 MM in nano-related grants (FY 08).
Thank You
James Rudd
tjrudd@nsf.gov